ASYMPTOTICS OF MAXIMUM LIKELIHOOD PARAMETER ESTIMATES FOR GAUSSIAN PROCESSES: THE ORNSTEIN-UHLENBECK PRIOR

被引:0
|
作者
Karvonen, Toni [1 ]
Tronarp, Filip [1 ]
Sarkka, Simo [1 ]
机构
[1] Aalto Univ, Dept Elect Engn & Automat, Espoo, Finland
基金
芬兰科学院;
关键词
Gaussian process regression; Ornstein-Uhlenbeck process; maximum likelihood estimation; probabilistic numerics;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This article studies the maximum likelihood estimates of magnitude and scale parameters for a Gaussian process of Ornstein-Uhlenbeck type used to model a deterministic function that does not have to be a realisation of an Ornstein-Uhlenbeck process. Specifically, we derive explicit expressions for the limiting values of the maximum likelihood estimates as the number of observations increases. The results demonstrate that the function typically needs to be sufficiently similar to a sample path of an Ornstein-Uhlenbeck process or have discontinuities if the variance of the model is to remain non-zero. Numerical examples illustrate the behaviour of the estimates when the function is not a sample path of any Ornstein-Uhlenbeck process.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Maximum likelihood estimation for reflected Ornstein-Uhlenbeck processes
    Bo, Lijun
    Wang, Yongjin
    Yang, Xuewei
    Zhang, Guannan
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (01) : 588 - 596
  • [2] Maximum likelihood estimation for multiscale Ornstein-Uhlenbeck processes
    Zhang, Fan
    Papavasiliou, Anastasia
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2018, 90 (06) : 807 - 835
  • [3] Maximum likelihood estimation in processes of Ornstein-Uhlenbeck type
    Valdivieso L.
    Schoutens W.
    Tuerlinckx F.
    Statistical Inference for Stochastic Processes, 2009, 12 (1) : 1 - 19
  • [4] Maximum likelihood estimation for symmetric α-stable Ornstein-Uhlenbeck processes
    Chen, Zhifen
    Chen, Xiaopeng
    STOCHASTICS AND DYNAMICS, 2021, 21 (04)
  • [5] Sequential maximum likelihood estimation for reflected Ornstein-Uhlenbeck processes
    Lee, Chihoon
    Bishwal, Jaya P. N.
    Lee, Myung Hee
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2012, 142 (05) : 1234 - 1242
  • [6] Maximum likelihood estimation for reflected Ornstein-Uhlenbeck processes with jumps
    Zhao, Huiyan
    Zhang, Chongqi
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2019, 48 (05) : 1221 - 1233
  • [7] Gaussian and hermite Ornstein-Uhlenbeck processes
    Es-Sebaiy, Khalifa
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2023, 41 (02) : 394 - 423
  • [8] Rate of convergence for the maximum likelihood estimator in fractional Ornstein-Uhlenbeck processes
    Sun, Lin
    Liu, Youzhu
    Xu, Weijun
    Xiao, Weilin
    INFORMATION-AN INTERNATIONAL INTERDISCIPLINARY JOURNAL, 2012, 15 (02): : 461 - 466
  • [9] Sequential maximum likelihood estimation for reflected generalized Ornstein-Uhlenbeck processes
    Bo, Lijun
    Yang, Xuewei
    STATISTICS & PROBABILITY LETTERS, 2012, 82 (07) : 1374 - 1382
  • [10] On Ornstein-Uhlenbeck driven by Ornstein-Uhlenbeck processes
    Bercu, Bernard
    Proia, Frederic
    Savy, Nicolas
    STATISTICS & PROBABILITY LETTERS, 2014, 85 : 36 - 44