A reduced pressure-assisted vapor penetration of ionic liquid into the laminated graphene oxide membranes for efficient CO2 separation

被引:13
作者
Wu, Mian [1 ,2 ]
Song, Xiangju [2 ]
Zhang, Xiaoqian [2 ,3 ]
Jiao, Chengli [2 ]
Jiang, Heqing [2 ]
机构
[1] China Univ Min & Technol, Sch Chem Engn & Technol, Xuzhou 221116, Jiangsu, Peoples R China
[2] Chinese Acad Sci, Qingdao Inst Bioenergy & Bioproc Technol, Qingdao Key Lab Funct Membrane Mat & Membrane Tec, Qingdao 266101, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Ionic liquid; Vapor penetration; 2D nanochannels; Laminated GO membrane; CO2; separation; TRANSPORT; NANOPORES; TETRAFLUOROBORATE; CRYSTALLIZATION; CONFINEMENT; SOLUBILITY; ABSORPTION; NANOFIBERS; FRAMEWORKS; SHIP;
D O I
10.1016/j.seppur.2022.120514
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Tailor-made ultrathin and defect-free supported ionic liquid membranes (SILMs) have great potential for CO2 separation. Herein, we developed a highly perm-selective CO2-philic laminated GO supported ionic liquid membrane (GO-SILM) with a thickness of 100 nm, via a reduced pressure-assisted vapor penetration strategy. Specifically, under reduced pressure condition, the IL 1-ethyl-3-methylimidazolium tetrafluomborate ([EMIM] [BF4]) vapor can not only seal the possible defects/pores in GO membrane, but also penetrate into the 2D nanochannels of laminated GO membrane. Based on the favorable interaction between IL and GO nanosheets, IL can be confined within the nanochannels of laminated GO membranes, which favors a fast and selective CO2 transport. Besides, the ultrathin selective layer shortens the transport distance extremely. Benefiting from the aforementioned features, the obtained GO-SILMs display a high CO2 permeance of 56.6 GPU with CO2/CH4 selectivity of 53.5, which is superior to other reported SILMs. The groundbreaking membrane fabrication approach through reduced pressure-assisted IL vapor penetration into GO membrane to seal the non-selective defects is facile, effective and IL-saving, which paves a new way for the development of ultrathin and defect-free SILMs for high-efficient CO2 separation.
引用
收藏
页数:8
相关论文
共 53 条
[1]   Confinement of Ionic Liquids in Nanocages: Tailoring the Molecular Sieving Properties of ZIF-8 for Membrane-Based CO2 Capture [J].
Ban, Yujie ;
Li, Zhengjie ;
Li, Yanshuo ;
Peng, Yuan ;
Jin, Hua ;
Jiao, Wenmei ;
Guo, Ang ;
Wang, Po ;
Yang, Qingyuan ;
Zhong, Chongli ;
Yang, Weishen .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (51) :15483-15487
[2]   Nanoscale Carbon Greatly Enhances Mobility of a Highly Viscous Ionic Liquid [J].
Chaban, Vitaly V. ;
Prezhdo, Oleg V. .
ACS NANO, 2014, 8 (08) :8190-8197
[3]   CO2-philic WS2 laminated membranes with a nanoconfined ionic liquid [J].
Chen, Danke ;
Wang, Wensen ;
Ying, Wen ;
Guo, Yi ;
Meng, Donghui ;
Yan, Youguo ;
Yan, Rongxin ;
Peng, Xinsheng .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (34) :16566-16573
[4]   Enhanced Gas Separation through Nanoconfined Ionic Liquid in Laminated MoS2 Membrane [J].
Chen, Danke ;
Ying, Wen ;
Guo, Yi ;
Ying, Yulong ;
Peng, Xinsheng .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (50) :44251-44257
[5]   Role of LiBF4 in Ionic Liquid Membranes for Facilitated CO2 Transport [J].
Choi, Yeji ;
Hong, Gil Hwan ;
Kang, Sang Wook .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2016, 16 (03) :2832-2835
[6]   Influence of Ionic Liquid Structure on Supported Ionic Liquid Membranes Effectiveness in Carbon Dioxide/Methane Separation [J].
Cichowska-Kopczynska, Iwona ;
Joskowska, Monika ;
Debski, Bartosz ;
Luczak, Justyna ;
Aranowski, Robert .
JOURNAL OF CHEMISTRY, 2013, 2013
[7]   Combination of ionic liquids with membrane technology: A new approach for CO2 separation [J].
Dai, Zhongde ;
Noble, Richard D. ;
Gin, Douglas L. ;
Zhang, Xiangping ;
Deng, Liyuan .
JOURNAL OF MEMBRANE SCIENCE, 2016, 497 :1-20
[8]   Boron Nitride Membranes with a Distinct Nanoconfinement Effect for Efficient Ethylene/Ethane Separation [J].
Dou, Haozhen ;
Jiang, Bin ;
Xu, Mi ;
Zhang, Zhen ;
Wen, Guobin ;
Peng, Feifei ;
Yu, Aiping ;
Bai, Zhengyu ;
Sun, Yongli ;
Zhang, Luhong ;
Jiang, Zhongyi ;
Chen, Zhongwei .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (39) :13969-13975
[9]   Cross-Linking between Sodalite Nanoparticles and Graphene Oxide in Composite Membranes to Trigger High Gas Permeance, Selectivity, and Stability in Hydrogen Separation [J].
Guo, Hailing ;
Kong, Guodong ;
Yang, Ge ;
Pang, Jia ;
Kang, Zixi ;
Feng, Shou ;
Zhao, Lei ;
Fan, Lili ;
Zhu, Liangkui ;
Vicente, Aurelie ;
Peng, Peng ;
Yan, Zifeng ;
Sun, Daofeng ;
Mintova, Svetlana .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (15) :6284-6288
[10]   Studies on an Ionic Liquid Confined in Silica Nanopores: Change in Tg and Evidence of Organic-Inorganic Linkage at the Pore Wall Surface [J].
Gupta, Abhishek Kumar ;
Verma, Yogendra Lal ;
Singh, Rajendra Kumar ;
Chandra, Suresh .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (03) :1530-1539