Tribological properties of ultrahigh-molecular-weight polyethylene (UHMWPE) composites reinforced with different contents of glass and carbon fibers

被引:20
|
作者
Wang, Yanzhen [1 ]
Yin, Zhongwei [2 ]
机构
[1] Shanghai Jiao Tong Univ, State Key Lab Mech Syst & Vibrat, Shanghai, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Mech Engn, Shanghai, Peoples R China
关键词
UHMWPE; Friction and wear; Fiber fillers; Transfer film; PTFE/KEVLAR FABRIC COMPOSITES; BEHAVIOR; WEAR; FRICTION; DRY; TIAL6V4;
D O I
10.1108/ILT-01-2018-0005
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Purpose This purpose of this study was to investigate the effects of carbon fiber (CF) and/or glass fiber (GF) fillers on the tribological behaviors of ultrahigh-molecular-weight polyethylene (UHMWPE) composites to develop a high-performance water-lubricated journal bearing material. Design/methodology/approach Tribological tests were conducted using a pin-on-disc tribometer using polished GCr15 steel pins against the UHMWPE composite discs under dry conditions with a contact pressure of 15 MPa and a sliding speed of 0.15 m/s. Scanning electron microscopy, laser 3D micro-imaging profile measurements and energy-dispersive X-ray spectrometry were used to analyze the morphologies and elemental distributions of the worn surfaces. Findings The results showed that hybrid CF and GF fillers effectively improved the wear resistance of the composites. The fiber fillers decreased the contact area, promoted transfer from the polymers and decreased the interlocking and plowing of material pairs, which contributed to the reduction of both the friction coefficient and the wear rate. Originality/value The UHMWPE composite containing 12.5 Wt.% CF and 12.5 Wt.% GF showed the best wear resistance of 2.61 x 10(-5) mm(3)/(N center dot m) and the lower friction coefficient of 0.12 under heavy loading. In addition, the fillers changed the worn surface morphology and the wear mechanism of the composites.
引用
收藏
页码:22 / 30
页数:9
相关论文
共 50 条
  • [21] Effect of Fillers on Impact Resistance of Ultrahigh Molecular Weight Polyethylene [UHMWPE] reinforced Polyester Composites
    Maheswaran, G.
    Murugan, R.
    TEKSTIL VE KONFEKSIYON, 2023, 33 (04): : 337 - 346
  • [22] Effect of Fluorination of Ultrahigh-Molecular-Weight Polyethylene and Its Composites on the Surface Structure and Properties
    V. G. Nazarov
    I. V. Nagornova
    V. P. Stolyarov
    F. A. Doronin
    A. G. Evdokimov
    P. N. Brevnov
    A. S. Zabolotnov
    L. A. Novokshonova
    Russian Journal of Physical Chemistry B, 2018, 12 : 1066 - 1075
  • [23] Effect of Fluorination of Ultrahigh-Molecular-Weight Polyethylene and Its Composites on the Surface Structure and Properties
    Nazarov, V. G.
    Nagornova, I. V.
    Stolyarov, V. P.
    Doronin, F. A.
    Evdokimov, A. G.
    Brevnov, P. N.
    Zabolotnov, A. S.
    Novokshonova, L. A.
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B, 2018, 12 (06) : 1066 - 1075
  • [24] The effects of hybrid fillers on thermal, mechanical, physical, and antimicrobial properties of ultrahigh-molecular-weight polyethylene-reinforced composites
    Subli, Mohamad Hazwan
    Omar, Mohd Firdaus
    Zulkepli, Nik Noriman
    Othman, Muhammad Bisyrul Hafi
    POLYMER COMPOSITES, 2017, 38 (08) : 1689 - 1697
  • [25] Electrical and mechanical properties of carbon nanotube/ultrahigh-molecular-weight polyethylene composites prepared by a filler prelocalization method
    Mierczynska, A.
    Mayne-L'Hermite, M.
    Boiteux, G.
    Jeszka, J. K.
    JOURNAL OF APPLIED POLYMER SCIENCE, 2007, 105 (01) : 158 - 168
  • [26] Mechanical properties of rigid polyurethane composites reinforced with surface treated ultrahigh molecular weight polyethylene fibers
    Meng, Li
    Li, Weiwei
    Ma, Renliang
    Huang, Momo
    Cao, Yingbo
    Wang, Jiawen
    POLYMERS FOR ADVANCED TECHNOLOGIES, 2018, 29 (02) : 843 - 851
  • [27] Tribological properties of ultra-high-molecular-weight-polyethylene composites reinforced with carbon fiber
    Xiong, Dang-Sheng
    He, Chun-Xia
    Mocaxue Xuebao/Tribology, 2002, 22 (06): : 454 - 457
  • [28] Effect of Carbon Fiber Surface Modification on the Mechanical Properties of Carbon-Fiber-Reinforced Ultrahigh-Molecular-Weight Polyethylene Composite
    Pan Yusong
    Mao Jiaheng
    Ding Jie
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2019, 28 (04) : 1995 - 2005
  • [29] Effect of Carbon Fiber Surface Modification on the Mechanical Properties of Carbon-Fiber-Reinforced Ultrahigh-Molecular-Weight Polyethylene Composite
    Pan Yusong
    Mao Jiaheng
    Ding Jie
    Journal of Materials Engineering and Performance, 2019, 28 : 1995 - 2005
  • [30] Use of Constants of Carbon and Ultrahigh-Molecular-Weight Polyethylene Fiber for Calculation of Density of Unidirectional Composites
    Mamonov V.I.
    Krylov I.K.
    Inorganic Materials: Applied Research, 2019, 10 (05) : 1015 - 1022