Optical motion control of catalytic WS2 and MoS2 micromotors

被引:5
作者
de la Asuncion-Nadal, Victor [1 ]
Maria-Hormigos, Roberto [1 ,2 ]
Jurado-Sanchez, Beatriz [1 ,3 ]
Escarpa, Alberto [1 ,3 ]
机构
[1] Univ Alcala, Dept Analyt Chem Phys Chem & Chem Engn, Ctra Madrid Barcelona,Km 33-600, Madrid 28802, Spain
[2] Brno Univ Technol CEITEC BUT, Cent European Inst Technol, Future Energy & Innovat Lab, Purkynova 123, Brno 61200, Czech Republic
[3] Univ Alcala, Chem Res Inst Andres M del Rio, E-28871 Alcala De Henares, Spain
关键词
Micromotors; Light; Chalcogenides; Catalytic; Propulsion; NANOSHEETS;
D O I
10.1016/j.apmt.2022.101664
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Herein we described the on-demand optically controlled braking and acceleration of transition metal dichal-cogenide (TMD) based tubular catalytic micromotors. The direct electrodeposition of a thin WS2 or MoS2 outer layer imparts the micromotors with a direct bandgap for built-in optical responsive properties, along with light-induced heating. Thus, up to 70% speed acceleration is observed after irradiation from 365 to 535 nm. The phenomena can be explained by a mixed effect of electron generation and promotion from the active electronic levels of the outer WS2 or MoS2 micromotor layer, which recombines with the Pt layer, generating an additional peroxide input for increased speeds. The inherent photothermal properties of the TMD outer layer of the micromotors after light interaction also result in an increase in the temperature of the inner catalytic Pt layer, which results in increased decomposition kinetics. On-demand braking and acceleration of the micromotors can be thus achieved in the full electromagnetic spectrum, representing an alternative approach to control catalytic micromotor propulsion for a myriad of applications.
引用
收藏
页数:7
相关论文
共 29 条
[1]   Hybrid Nanovehicles: One Machine, Two Engines [J].
Chen, Chuanrui ;
Soto, Fernando ;
Karshalev, Emil ;
Li, Jinxing ;
Wang, Joseph .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (02)
[2]   PEGylated WS2 Nanosheets as a Multifunctional Theranostic Agent for in vivo Dual-Modal CT/Photoacoustic Imaging Guided Photothermal Therapy [J].
Cheng, Liang ;
Liu, Jingjing ;
Gu, Xing ;
Gong, Hua ;
Shi, Xiaoze ;
Liu, Teng ;
Wang, Chao ;
Wang, Xiaoyong ;
Liu, Gang ;
Xing, Huaiyong ;
Bu, Wenbo ;
Sun, Baoquan ;
Liu, Zhuang .
ADVANCED MATERIALS, 2014, 26 (12) :1886-1893
[3]   Chalcogenides-based Tubular Micromotors in Fluorescent Assays [J].
de la Asuncion-Nadal, Victor ;
Pacheco, Marta ;
Jurado-Sanchez, Beatriz ;
Escarpa, Alberto .
ANALYTICAL CHEMISTRY, 2020, 92 (13) :9188-9193
[4]   Near infrared-light responsive WS2 microengines with high-performance electro- and photo-catalytic activities [J].
de la Asuncion-Nadal, Victor ;
Jurado-Sanchez, Beatriz ;
Vazquez, Luis ;
Escarpa, Alberto .
CHEMICAL SCIENCE, 2020, 11 (01) :132-140
[5]   Magnetic Fields Enhanced the Performance of Tubular Dichalcogenide Micromotors at Low Hydrogen Peroxide Levels [J].
de la Asuncion-Nadal, Victor ;
Jurado-Sanchez, Beatriz ;
Vazquez, Luis ;
Escarpa, Alberto .
CHEMISTRY-A EUROPEAN JOURNAL, 2019, 25 (57) :13157-13163
[6]   ZnO-based microrockets with light-enhanced propulsion [J].
Dong, Renfeng ;
Wang, Chun ;
Wang, Qinglong ;
Pei, Allen ;
She, Xueling ;
Zhang, Yuxian ;
Cai, Yuepeng .
NANOSCALE, 2017, 9 (39) :15027-15032
[7]  
Fiedler C, 2021, CHEM-EUR J, V27, P3262, DOI 10.1002/chem.202004792
[8]   Nano/Micromotors in (Bio)chemical Science Applications [J].
Guix, Maria ;
Mayorga-Martinez, Carmen C. ;
Merkoci, Arben .
CHEMICAL REVIEWS, 2014, 114 (12) :6285-6322
[9]   Multiwavelength Phototactic Micromotor with Controllable Swarming Motion for "Chemistry-on-the-Fly" [J].
Hu, Yang ;
Liu, Wei ;
Sun, Yan .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (37) :41495-41505
[10]   Metal dichalcogenide nanosheets: preparation, properties and applications [J].
Huang, Xiao ;
Zeng, Zhiyuan ;
Zhang, Hua .
CHEMICAL SOCIETY REVIEWS, 2013, 42 (05) :1934-1946