Complex dynamics, hidden attractors and continuous approximation of a fractional-order hyperchaotic PWC system

被引:38
作者
Danca, Marius-F [1 ,2 ]
Feckan, Michal [3 ,4 ]
Kuznetsov, Nikolay V. [5 ,6 ]
Chen, Guanrong [7 ]
机构
[1] Avram Iancu Univ, Dept Math & Comp Sci, Cluj Napoca 400380, Romania
[2] Romanian Inst Sci & Technol, Cluj Napoca 400487, Romania
[3] Comenius Univ, Dept Math Anal & Numer Math, Fac Math Phys & Informat, Bratislava 84248, Slovakia
[4] Slovak Acad Sci, Math Inst, Stefanikova 49, Bratislava 81473, Slovakia
[5] St Petersburg State Univ, Dept Appl Cybernet, St Petersburg, Russia
[6] Univ Jyvaskyla, Dept Math Informat Technol, Jyvaskyla, Finland
[7] City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China
基金
俄罗斯科学基金会;
关键词
PWC system of fractional order; Continuous approximation; Hidden chaotic attractor; Hyperchaos; Periodicity of fractional-order system; PERIODIC-SOLUTIONS; CHAOTIC ATTRACTORS; NUMERICAL-SOLUTION; NONEXISTENCE; DIFFERENCE; EXISTENCE;
D O I
10.1007/s11071-017-4029-5
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper, a continuous approximation to studying a class of PWC systems of fractional-order is presented. Some known results of set-valued analysis and differential inclusions are utilized. The example of a hyperchaotic PWC system of fractional order is analyzed. It is found that without equilibria, the system has hidden attractors.
引用
收藏
页码:2523 / 2540
页数:18
相关论文
共 46 条
[21]   The Periodic Solution of Fractional Oscillation Equation with Periodic Input [J].
Duan, Jun-Sheng .
ADVANCES IN MATHEMATICAL PHYSICS, 2013, 2013
[22]   MULTIVALUED FRACTIONAL DIFFERENTIAL-EQUATIONS [J].
ELSAYED, AMA ;
IBRAHIM, AG .
APPLIED MATHEMATICS AND COMPUTATION, 1995, 68 (01) :15-25
[23]   Hidden attractors without equilibrium and adaptive reduced-order function projective synchronization from hyperchaotic Rikitake system [J].
Feng, Yu ;
Pan, Weiquan .
PRAMANA-JOURNAL OF PHYSICS, 2017, 88 (04)
[24]  
Garrappa R, Predictor-corrector PECE method for fractional differential equations
[25]  
Gorenflo R., 2020, Mittag-Leffler Functions, Related Topics and Applications, V2nd
[26]   On the nonexistence of non-constant exact periodic solutions in a class of the Caputo fractional-order dynamical systems [J].
Kang, Yan-Mei ;
Xie, Yong ;
Lu, Jin-Cheng ;
Jiang, Jun .
NONLINEAR DYNAMICS, 2015, 82 (03) :1259-1267
[27]   Non-existence of periodic solutions in fractional-order dynamical systems and a remarkable difference between integer and fractional-order derivatives of periodic functions [J].
Kaslik, Eva ;
Sivasundaram, Seenith .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (03) :1489-1497
[28]  
Kuznetsov N., 2010, IFAC P, V43, P29, DOI [DOI 10.3182/20100826-3-TR-4016.00009, 10.3182/20100826-3-TR-4016.00009]
[29]  
Lempio F., 1998, BAYREUTHER MATH SCHR, V54, P149
[30]   HIDDEN ATTRACTORS IN DYNAMICAL SYSTEMS. FROM HIDDEN OSCILLATIONS IN HILBERT-KOLMOGOROV, AIZERMAN, AND KALMAN PROBLEMS TO HIDDEN CHAOTIC ATTRACTOR IN CHUA CIRCUITS [J].
Leonov, G. A. ;
Kuznetsov, N. V. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2013, 23 (01)