Further remarks on strict input-to-state stable Lyapunov functions for time-varying systems

被引:51
作者
Malisoff, M
Mazenc, F
机构
[1] INRA, UMR Anal Syst & Biometrie, Projet MERE INRIA INRA, F-34060 Montpellier, France
[2] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
基金
美国国家科学基金会;
关键词
Lyapunov functions; input-to-state stabilization; non-autonomous systems;
D O I
10.1016/j.automatica.2005.05.015
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study the stability properties of a class of time-varying non-linear systems. We assume that non-strict input-to-state stable (ISS) Lyapunov functions for our systems are given and posit a mild persistency of excitation condition on our given Lyapunov functions which guarantee the existence of strict ISS Lyapunov functions for our systems. Next, we provide simple direct constructions of explicit strict ISS Lyapunov functions for our systems by applying an integral smoothing method. We illustrate our constructions using a tracking problem for a rotating rigid body. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1973 / 1978
页数:6
相关论文
共 23 条
[1]   Input-to-state stability of PD-controlled robotic systems [J].
Angeli, D .
AUTOMATICA, 1999, 35 (07) :1285-1290
[2]   Robust stabilization of the angular velocity of a rigid body [J].
Astolfi, A ;
Rapaport, A .
SYSTEMS & CONTROL LETTERS, 1998, 34 (05) :257-264
[3]  
Bacciotti A., 2001, LYAPUNOV FUNCTIONS S
[4]   SPACECRAFT ATTITUDE-CONTROL AND STABILIZATION - APPLICATIONS OF GEOMETRIC CONTROL-THEORY TO RIGID BODY MODELS [J].
CROUCH, PE .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1984, 29 (04) :321-331
[5]  
EDWARDS H, 2000, P 39 IEEE C DEC CONT
[6]   Tracking control of mobile robots: A case study in backstepping [J].
Jiang, ZP ;
Nijmeijer, H .
AUTOMATICA, 1997, 33 (07) :1393-1399
[7]  
Khalil HK., 2002, Nonlinear Systems, V3
[8]  
Lefeber E., 2000, THESIS U TWENTE ENSC
[9]   A nested Matrosov theorem and persistency of excitation for uniform convergence in stable nonautonomous systems [J].
Loría, A ;
Panteley, E ;
Popovic, D ;
Teel, AR .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (02) :183-198
[10]   Uniform exponential stability of linear time-varying systems:: revisited [J].
Loría, A ;
Panteley, E .
SYSTEMS & CONTROL LETTERS, 2002, 47 (01) :13-24