Effect of buffer composition on PNA-RNA hybridization studied in the microfluidic microarray chip

被引:12
作者
Chim, Wilson [1 ]
Sedighi, Abootaleb [1 ]
Brown, Christopher L. [2 ,3 ]
Pantophlet, Ralph [4 ,5 ]
Li, Paul C. H. [1 ]
机构
[1] Simon Fraser Univ, Dept Chem, Burnaby, BC V5A 1S6, Canada
[2] Griffith Univ, Sch Nat Sci, Brisbane, Qld, Australia
[3] Griffith Univ, Queensland Micro & Nanotechnol Ctr, Brisbane, Qld, Australia
[4] Simon Fraser Univ, Fac Hlth Sci, Burnaby, BC V5A 1S6, Canada
[5] Simon Fraser Univ, Dept Mol Biol & Biochem, Burnaby, BC V5A 1S6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
peptide nucleic acid (PNA); influenza viral RNA; probe buffer; hybridization buffer; salt; formamide; microfluidic microarray (MMA); MEDIATED ISOTHERMAL AMPLIFICATION; INFLUENZA-A H1N1; PEPTIDE NUCLEIC-ACIDS; REAL-TIME PCR; DNA HYBRIDIZATION; VIRAL-RNA; RAPID DETECTION; VIRUS; IDENTIFICATION; MICRODEVICE;
D O I
10.1139/cjc-2017-0319
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Herein, we report that peptide nucleic acid sequences (PNAs) have been used as the probe species for detection of RNA and that a microfluidic microarray (MMA) chip is used as the platform for detection of hybridizations between immobilized PNA probes and RNA targets. The RNA targets used are derived from influenza A sequences. This paper discusses the optimization of two probe technologies used for RNA detection and investigates how the composition of the probe buffer and the content of the hybridization solution can influence the overall results. Our data show that the PNA probe is a better choice than the DNA probe when there is low salt in the probe buffer composition. Furthermore, we show that the absence of salt (NaCl) in the hybridization buffer does not hinder the detection of RNA sequences. The results provide evidence that PNA probes are superior to DNA probes in term of sensitivity and adaptability, as PNA immobilization and PNA-RNA hybridization are less affected by salt content in the reaction buffers unlike DNA probes.
引用
收藏
页码:241 / 247
页数:7
相关论文
共 56 条
[1]  
Abe T, 2011, LAB CHIP, V11, P1166, DOI [10.1039/c0lc00519c, 10.1039/c01c00519c]
[2]   Validation of oligonucleotide microarray data using microfluidic low-density arrays: a new statistical method to normalize real-time RT-PCR data [J].
Abruzzo, LV ;
Lee, KY ;
Fuller, A ;
Silverman, A ;
Keating, MJ ;
Medeiros, LJ ;
Coombes, KR .
BIOTECHNIQUES, 2005, 38 (05) :785-792
[3]   West Nile virus envelope protein inhibits dsRNA-induced innate immune responses [J].
Arjona, Alvaro ;
Ledizet, Michel ;
Anthony, Karen ;
Bonafe, Nathalie ;
Modis, Yorgo ;
Town, Terrence ;
Fikrig, Erol .
JOURNAL OF IMMUNOLOGY, 2007, 179 (12) :8403-8409
[4]   Analysis of biosensor chips for identification of nucleic acids [J].
Arlinghaus, HF ;
Kwoka, MN ;
Jacobson, KB .
ANALYTICAL CHEMISTRY, 1997, 69 (18) :3747-3753
[5]   Comparative modeling and analysis of microfluidic and conventional DNA microarrays [J].
Benn, JA ;
Hu, J ;
Hogan, BJ ;
Fry, RC ;
Samson, LD ;
Thorsen, T .
ANALYTICAL BIOCHEMISTRY, 2006, 348 (02) :284-293
[6]   Microfluidics-based extraction of viral RNA from infected mammalian cells for disposable molecular diagnostics [J].
Bhattacharyya, Arpita ;
Klapperich, Catherine A. .
SENSORS AND ACTUATORS B-CHEMICAL, 2008, 129 (02) :693-698
[7]   Peptide nucleic acids on microarrays and other biosensors [J].
Brandt, O ;
Hoheisel, JD .
TRENDS IN BIOTECHNOLOGY, 2004, 22 (12) :617-622
[8]   Microfluidic Chip for Molecular Amplification of Influenza A RNA in Human Respiratory Specimens [J].
Cao, Qingqing ;
Mahalanabis, Madhumita ;
Chang, Jessie ;
Carey, Brendan ;
Hsieh, Christopher ;
Stanley, Ahjegannie ;
Odell, Christine A. ;
Mitchell, Patricia ;
Feldman, James ;
Pollock, Nira R. ;
Klapperich, Catherine M. .
PLOS ONE, 2012, 7 (03)
[9]  
Chen H., 2007, P 11 INT C MIN CHEM, P1282
[10]   A rotating microfluidic array chip for staining assays [J].
Chen, Hong ;
Li, XiuJun ;
Wang, Lin ;
Li, Paul C. H. .
TALANTA, 2010, 81 (4-5) :1203-1208