This paper discusses the development of an advanced Iterative Learning Control (ILC) scheme for the filling of wet clutches. In the presented scheme, the appropriate actuator signal for a new clutch engagement is learned automatically based on the quality of previous engagements, such that time-consuming and cumbersome calibrations can be avoided. First, an ILC controller, which uses the position of the piston as control input, is developed and tested on a non-rotating clutch under well controlled conditions. Afterwards, a similar strategy is tested on a rotating set-up, where a pressure sensor is used as the input of the ILC controller. On a higher level, both the position and the pressure controller are extended with a second learning algorithm, that adapts the reference position/pressure to account for environmental changes which can not be learned by the low-level ILC controller. It is shown that a strong reduction of the transmitted torque level as well as a significant shortening of the engagement time can be achieved with the developed strategy, compared to traditional time-invariant control strategies.