Carbon sequestration and methane emissions along a microtopographic gradient in a tropical Andean peatland

被引:11
|
作者
Villa, Jorge A. [1 ,2 ]
Mejia, Gloria M. [1 ]
Velasquez, Daniela [1 ]
Botero, Andres [1 ]
Acosta, Sharon A. [1 ]
Marulanda, Juliana M. [1 ]
Osorno, Ana M. [1 ]
Bohrer, Gil [2 ]
机构
[1] Corp Univ Lasallista, Grp Invest Aplicada Medio Ambiente GAMA, Carrera 51 118 Sur 57, Caldas 055440, Antioquia, Colombia
[2] Ohio State Univ, Dept Civil Environm & Geodet Engn, 470 Hitchcock Hall,2070 Neil Ave, Columbus, OH 43210 USA
关键词
Methane emission; Carbon sequestration; Climate regulation; Ecosystem services; Paramo; Vulnerability; Resilience; GREENHOUSE-GAS EMISSIONS; PLANT FUNCTIONAL-GROUP; FRESH-WATER WETLAND; CLIMATE-CHANGE; ACCUMULATION RATES; CH4; EMISSIONS; TABLE DECLINE; BLANKET PEAT; LAND-USE; SOIL;
D O I
10.1016/j.scitotenv.2018.11.109
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Tropical alpine peatlands are among the least studied wetlands types on earth. Their important ecosystem services at local and regional scope are currently threatened by climate and land use changes. Recent studies in these ecosystems suggest their importance to the provision of climate regulation services, prompting a better understanding of the underlying functions and their variability at ecosystem scales. The objective of this study is to determine the variability of methane (CH4) fluxes and carbon (C) sequestration within a tropical alpine peatland in three locations along a microtopographic gradient and its associated plant diversity. These locations accounted for: 1) hummocks, found mostly near the edge of the peat with a water table below the soil surface, 2) lawns, in the transition zone, with a water-table near the soil surface, and 3) hollows, permanently flooded with a water table above the soil surface, composed of small patches of open water intermingled with unconsolidated hummocks that surface the water level. Results indicate that CH4 flux is lowest in the lawns, while C sequestration is highest. Conversely, the hummock and hollow have higher CH4 flux and lower C sequestration. In addition, plant diversity in the lawns is higher than in the hummock and hollow location. Dryer conditions brought by current climate change in the northern Andes are expected to lower the water tables in the peatland. This change is expected to drive a change in CH4 flux and C sequestration at the lawns, currently dominating the peatland, towards values more similar to those measured in the hummocks. This decrease may also represent a change towards the lower plant diversity that characterized the hummock. Such changes will reduce the ratio of C sequestration:CH4 flux signifying the reduction of resilience and increment of vulnerability of the climate-regulating service to further perturbations. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:651 / 661
页数:11
相关论文
共 50 条
  • [21] Temporal Variability in Heterotrophic Carbon Dioxide Emissions From A Drained Tropical Peatland in Uganda
    Farmer, Jenny
    Langan, Charlie
    Smith, Jo U.
    FRONTIERS IN SOIL SCIENCE, 2022, 2
  • [22] The Tropical Peatland Plantation-Carbon Assessment Tool: estimating CO2 emissions from tropical peat soils under plantations
    Farmer, Jenny
    Matthews, Robin
    Smith, Pete
    Smith, Jo U.
    MITIGATION AND ADAPTATION STRATEGIES FOR GLOBAL CHANGE, 2014, 19 (06) : 863 - 885
  • [23] Microbial organic matter reduction regulates methane and carbon dioxide production across an ombrotrophic-minerotrophic peatland gradient
    Keller, Jason K.
    Bridgham, Scott D.
    Takagi, Kimberly K.
    Zalman, Cassandra A.
    Rush, Jessica E.
    Anderson, Crisand
    Mosolf, Jessica M.
    Gabriel, Kristin N.
    SOIL BIOLOGY & BIOCHEMISTRY, 2023, 182
  • [24] Spatial variability of surface peat properties and carbon emissions in a tropical peatland oil palm monoculture during a dry season
    Dhandapani, Selva
    Girkin, Nicholas T.
    Evers, Stephanie
    SOIL USE AND MANAGEMENT, 2022, 38 (01) : 381 - 395
  • [25] Carbon Dioxide and Methane Emissions from Peat Soil in an Undrained Tropical Peat Swamp Forest
    Ishikura, Kiwamu
    Hirata, Ryuichi
    Hirano, Takashi
    Okimoto, Yosuke
    Wong, Guan Xhuan
    Melling, Lulie
    Aeries, Edward Baran
    Kiew, Frankie
    Lo, Kim San
    Musin, Kevin Kemudang
    Waili, Joseph Wenceslaus
    Ishii, Yoshiyuki
    ECOSYSTEMS, 2019, 22 (08) : 1852 - 1868
  • [26] The relationship of tropical bird communities to tree species composition and vegetation structure along an Andean elevational gradient
    Jankowski, Jill E.
    Merkord, Christopher L.
    Rios, William Farfan
    Cabrera, Karina Garcia
    Revilla, Norma Salinas
    Silman, Miles R.
    JOURNAL OF BIOGEOGRAPHY, 2013, 40 (05) : 950 - 962
  • [27] Tree mortality and recruitment in secondary Andean tropical mountain forests along a 3000 m elevation gradient
    Ordonez, Jenny C.
    Pinto, Esteban
    Bernardi, Antonella
    Cuesta, Francisco
    PLOS ONE, 2024, 19 (03):
  • [28] Andean headwater and piedmont streams are hot spots of carbon dioxide and methane emissions in the Amazon basin
    Chiriboga, Gonzalo
    Borges, Alberto V.
    COMMUNICATIONS EARTH & ENVIRONMENT, 2023, 4 (01):
  • [29] Tree stem and soil methane and nitrous oxide fluxes, but not carbon dioxide fluxes, switch sign along a topographic gradient in a tropical forest
    Warren Daniel
    Clément Stahl
    Benoît Burban
    Jean-Yves Goret
    Jocelyn Cazal
    Andreas Richter
    Ivan A. Janssens
    Laëtitia M. Bréchet
    Plant and Soil, 2023, 488 : 533 - 549
  • [30] Comparative analysis of carbon stock and litter nutrient concentration in tropical forests along the ecological gradient in Kenya
    Namaswa, Timothy
    Mandila, Brexidis
    Hitimana, Joseph
    Kananu, Judith
    JOURNAL OF FORESTRY RESEARCH, 2025, 36 (01)