Fast multilevel augmentation method for nonlinear integral equations

被引:8
作者
Chen, Jian [1 ]
机构
[1] Foshan Univ, Dept Math, Foshan 528000, Peoples R China
关键词
multilevel augmentation method; multiscale decomposition; Urysohn integral equations; orthogonal projection; Galerkin scheme; FIXED-POINTS; 2ND KIND; OPERATORS;
D O I
10.1080/00207160.2011.627436
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this study, we extend the multilevel augmentation method for Hammerstein equations established in Chen et al. [Fast multilevel augmentation methods for solving Hammerstein equations, SIAM J. Numer. Anal. 47 (2009), pp. 2321-2346] to solve nonlinear Urysohn integral equations. Under certain differentiability assumptions on the kernel function, we show that the method enjoys the optimal convergence order and linear computational complexity. Finally, numerical experiments are presented to confirm the theoretical results and illustrate the efficiency of the method.
引用
收藏
页码:80 / 89
页数:10
相关论文
共 10 条
[1]  
Anselone P. M., 1971, Collectively Compact Operator Approximation Theory and Applications to Integral Equations
[2]  
Anselone PM., 1964, J MATH ANAL APPL, V9, P268, DOI DOI 10.1016/0022-247X(64)90042-3
[3]   NUMERICAL EVALUATION OF FIXED-POINTS FOR COMPLETELY CONTINUOUS OPERATORS [J].
ATKINSON, KE .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1973, 10 (05) :799-807
[4]   PROJECTION AND ITERATED PROJECTION METHODS FOR NONLINEAR INTEGRAL-EQUATIONS [J].
ATKINSON, KE ;
POTRA, FA .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (06) :1352-1373
[5]   Multilevel augmentation methods for solving the sine-Gordon equation [J].
Chen, Jian ;
Chen, Zhongying ;
Cheng, Sirui .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 375 (02) :706-724
[6]   FAST MULTILEVEL AUGMENTATION METHODS FOR SOLVING HAMMERSTEIN EQUATIONS [J].
Chen, Zhongying ;
Wu, Bin ;
Xu, Yuesheng .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (03) :2321-2346
[7]   The Petrov-Galerkin method for second kind integral equations .2. Multiwavelet schemes [J].
Chen, ZY ;
Micchelli, CA ;
Xu, YS .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 1997, 7 (03) :199-233
[8]   ASYMPTOTIC ERROR EXPANSION FOR THE NYSTROM METHOD FOR NONLINEAR FREDHOLM INTEGRAL-EQUATIONS OF THE 2ND KIND [J].
HAN, GQ .
BIT, 1994, 34 (02) :254-261
[9]  
Vainikko G., 1967, U.S.S.R. Comp. M ath. Pfys, V7, P1, DOI [10.1016/0041-5553(67)90140-1, DOI 10.1016/0041-5553(67)90140-1]
[10]   APPROXIMATION OF FIXED-POINTS OF NONLINEAR COMPACT OPERATORS [J].
WEISS, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1974, 11 (03) :550-553