Chaotic dynamics and synchronization of fractional-order Chua's circuits with a piecewise-linear nonlinearity

被引:29
|
作者
Lu, JG [1 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Automat, Shanghai 200030, Peoples R China
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS B | 2005年 / 19卷 / 20期
关键词
chaos; synchronization; Chua's circuit; fractional-order system; fractional calculus;
D O I
10.1142/S0217979205032115
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this paper, we numerically investigate the chaotic behaviors of the, fractional-order Chua's circuit with a piecewise-linear nonlinearity. We find that chaos exists in the fractional-order Chua's circuit with order less than 3. The lowest order we find to have chaos is 2.7 in the homogeneous fractional-order Chua's circuit and 2.8 in the unhomogeneous fractional-order Chua's circuit. Our results ate validated by the existence of a positive Lyapunov exponent. A chaos synchronization method is also presented for synchronizing the homogeneous fractional-order chaotic Chua's systems. The approach, based on stability theory of fractional-order linear systems, is simple and theoretically rigorous. It does not require the computation of the conditional Lyapunov exponents. Simulation results axe used to visualize and illustrate the effectiveness of the proposed synchronization method.
引用
收藏
页码:3249 / 3259
页数:11
相关论文
共 50 条
  • [31] Synchronization of fractional-order Lu chaotic oscillators for voice encryption
    Garcia-Sepulveda, O.
    Posadas-Castillo, C.
    Cortes-Preciado, A. D.
    Platas-Garza, M. A.
    Garza-Gonzalez, E.
    Sanchez, Allan G. S.
    REVISTA MEXICANA DE FISICA, 2020, 66 (03) : 364 - 371
  • [32] Mittag–Leffler synchronization of fractional-order uncertain chaotic systems
    王乔
    丁冬生
    齐冬莲
    Chinese Physics B, 2015, 24 (06) : 229 - 234
  • [33] Chaotic fractional-order Coullet system: Synchronization and control approach
    Shahiri, M.
    Ghaderi, R.
    Ranjbar N, A.
    Hosseinnia, S. H.
    Momani, S.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (03) : 665 - 674
  • [34] Synchronization of fractional-order chaotic systems based on the fractional-order sliding mode controller
    Yan Xiaomei
    Shang Ting
    Zhao Xiaoguo
    2013 32ND CHINESE CONTROL CONFERENCE (CCC), 2013, : 429 - 434
  • [35] Robust synchronization of perturbed Chen's fractional-order chaotic systems
    Asheghan, Mohammad Mostafa
    Beheshti, Mohammad Taghi Hamidi
    Tavazoei, Mohammad Saleh
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (02) : 1044 - 1051
  • [36] Fractional-order Chua's system: discretization, bifurcation and chaos
    Agarwal, Ravi P.
    El-Sayed, Ahmed M. A.
    Salman, Sanaa M.
    ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [37] Dynamics, circuit implementation and synchronization of a new three-dimensional fractional-order chaotic system
    Zhang, Xu
    Li, Zhijun
    Chang, De
    AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2017, 82 : 435 - 445
  • [38] Dynamics Analysis and Adaptive Synchronization of a Class of Fractional-Order Chaotic Financial Systems
    Zhang, Panhong
    Wang, Qingyi
    FRACTAL AND FRACTIONAL, 2024, 8 (10)
  • [39] Chaotic synchronization in small assemblies of driven Chua's circuits
    Sánchez, E
    Matías, MA
    Pérez-Muñuzuri, V
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2000, 47 (05) : 644 - 654
  • [40] On the dynamics, control and synchronization of fractional-order Ikeda map
    Ouannas, Adel
    Khennaoui, Amina-Aicha
    Odibat, Zaid
    Viet-Thanh Pham
    Grassi, Giuseppe
    CHAOS SOLITONS & FRACTALS, 2019, 123 : 108 - 115