Nitrification and denitrification in the Community Land Model compared with observations at Hubbard Brook Forest

被引:1
作者
Nevison, Cynthia [1 ]
Goodale, Christine [2 ]
Hess, Peter [3 ]
Wieder, William R. [1 ,4 ]
Vira, Julius [3 ,7 ]
Groffman, Peter M. [5 ,6 ]
机构
[1] Univ Colorado, Inst Arctic & Alpine Res, Boulder, CO 80309 USA
[2] Cornell Univ, Dept Ecol & Evolutionary Biol, Ithaca, NY USA
[3] Cornell Univ, Dept Biol & Environm Engn, Ithaca, NY USA
[4] Natl Ctr Atmospher Res, Climate & Global Dynam Lab, POB 3000, Boulder, CO 80307 USA
[5] CUNY, Grad Ctr, Adv Sci Res Ctr, New York, NY USA
[6] Cary Inst Ecosyst Studies, Millbrook, NY USA
[7] Finnish Meteorol Inst, Helsinki, Finland
基金
美国国家科学基金会;
关键词
CLM5.0; Community Land Model; denitrification; nitrification; nitrogen cycle; nitrogen limitation; NITROGEN-CYCLE; GLOBAL PATTERNS; CARBON STORAGE; CLIMATE-CHANGE; N2O EMISSIONS; N-15; TRACER; ECOSYSTEM; N-2; PREFERENCES; LIMITATION;
D O I
10.1002/eap.2530
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Models of terrestrial system dynamics often include nitrogen (N) cycles to better represent N limitations on terrestrial carbon (C) uptake, but simulating the fate of N in ecosystems has proven challenging. Here, key soil N fluxes and flux ratios from the Community Land Model version 5.0 (CLM5.0) are compared with an extensive set of observations from the Hubbard Brook Forest Long-Term Ecological Research site in New Hampshire. Simulated fluxes include microbial immobilization and plant uptake, which compete with nitrification and denitrification, respectively, for available soil ammonium (NH4+) and nitrate (NO3-). In its default configuration, CLM5.0 predicts that both plant uptake and immobilization are strongly dominated by NH4+ over NO3-, and that the model ratio of nitrification:denitrification is similar to 1:1. In contrast, Hubbard Brook observations suggest that NO3- plays a more significant role in plant uptake and that nitrification could exceed denitrification by an order of magnitude. Modifications to the standard CLM5.0 at Hubbard Brook indicate that a simultaneous increase in the competitiveness of nitrifying microbes for NH4+ and reduction in the competitiveness of denitrifying bacteria for NO3- are needed to bring soil N flux ratios into better agreement with observations. Such adjustments, combined with evaluation against observations, may help to improve confidence in present and future simulations of N limitation on the C cycle, although C fluxes, such as gross primary productivity and net primary productivity, are less sensitive to the model modifications than soil N fluxes.
引用
收藏
页数:15
相关论文
共 68 条
  • [1] Predicting the effects of climate change on water yield and forest production in the northeastern United States
    Aber, JD
    Ollinger, SV
    Federer, CA
    Reich, PB
    Goulden, ML
    Kicklighter, DW
    Melillo, JM
    Lathrop, RG
    [J]. CLIMATE RESEARCH, 1995, 5 (03) : 207 - 222
  • [2] Climate response to Amazon forest replacement by heterogeneous crop cover
    Badger, A. M.
    Dirmeyer, P. A.
    [J]. HYDROLOGY AND EARTH SYSTEM SCIENCES, 2015, 19 (11) : 4547 - 4557
  • [3] Complex response of the forest nitrogen cycle to climate change
    Bernal, Susana
    Hedin, Lars O.
    Likens, Gene E.
    Gerber, Stefan
    Buso, Don C.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (09) : 3406 - 3411
  • [4] NITROGEN BUDGET FOR AN AGGRADING NORTHERN HARDWOOD FOREST ECOSYSTEM
    BORMANN, FH
    LIKENS, GE
    MELILLO, JM
    [J]. SCIENCE, 1977, 196 (4293) : 981 - 983
  • [5] Soil O2 controls denitrification rates and N2O yield in a riparian wetland
    Burgin, Amy J.
    Groffman, Peter M.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2012, 117
  • [6] Soil core method for direct simultaneous determination of N2 and N2O emissions from forest soils
    Butterbach-Bahl, K
    Willibald, G
    Papen, H
    [J]. PLANT AND SOIL, 2002, 240 (01) : 105 - 116
  • [7] Decadal fates and impacts of nitrogen additions on temperate forest carbon storage: a data-model comparison
    Cheng, Susan J.
    Hess, Peter G.
    Wieder, William R.
    Thomas, R. Quinn
    Nadelhoffer, Knute J.
    Vira, Julius
    Lombardozzi, Danica L.
    Gundersen, Per
    Fernandez, Ivan J.
    Schleppi, Patrick
    Gruselle, Marie-Cecile
    Moldan, Filip
    Goodale, Christine L.
    [J]. BIOGEOSCIENCES, 2019, 16 (13) : 2771 - 2793
  • [8] Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems
    Cleveland, CC
    Townsend, AR
    Schimel, DS
    Fisher, H
    Howarth, RW
    Hedin, LO
    Perakis, SS
    Latty, EF
    Von Fischer, JC
    Elseroad, A
    Wasson, MF
    [J]. GLOBAL BIOGEOCHEMICAL CYCLES, 1999, 13 (02) : 623 - 645
  • [9] The Community Earth System Model Version 2 (CESM2)
    Danabasoglu, G.
    Lamarque, J. -F.
    Bacmeister, J.
    Bailey, D. A.
    DuVivier, A. K.
    Edwards, J.
    Emmons, L. K.
    Fasullo, J.
    Garcia, R.
    Gettelman, A.
    Hannay, C.
    Holland, M. M.
    Large, W. G.
    Lauritzen, P. H.
    Lawrence, D. M.
    Lenaerts, J. T. M.
    Lindsay, K.
    Lipscomb, W. H.
    Mills, M. J.
    Neale, R.
    Oleson, K. W.
    Otto-Bliesner, B.
    Phillips, A. S.
    Sacks, W.
    Tilmes, S.
    Van Kampenhout, L.
    Vertenstein, M.
    Bertini, A.
    Dennis, J.
    Deser, C.
    Fischer, C.
    Fox-Kemper, B.
    Kay, J. E.
    Kinnison, D.
    Kushner, P. J.
    Larson, V. E.
    Long, M. C.
    Mickelson, S.
    Moore, J. K.
    Nienhouse, E.
    Polvani, L.
    Rasch, P. J.
    Strand, W. G.
    [J]. JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2020, 12 (02)
  • [10] Depth patterns and connections between gross nitrogen cycling and soil exoenzyme activities in three northern hardwood forests
    Darby, Bridget A.
    Goodale, Christine L.
    Chin, Nathan A.
    Fuss, Colin B.
    Lang, Ashley K.
    Ollinger, Scott, V
    Lovett, Gary M.
    [J]. SOIL BIOLOGY & BIOCHEMISTRY, 2020, 147