Synthetic Biology and Metabolic Engineering Approaches and Its Impact on Non-Conventional Yeast and Biofuel Production

被引:27
作者
Madhavan, Aravind [1 ,2 ]
Jose, Anju Alphonsa [1 ]
Binod, Parameswaran [1 ]
Sindhu, Raveendran [1 ]
Sukumaran, Rajeev K. [1 ]
Pandey, Ashok [1 ,3 ]
Eulogio Castro, Galliano [4 ]
机构
[1] CSIR, Biotechnol Div, Natl Inst Interdisciplinary Sci & Technol, Trivandrum, Kerala, India
[2] Rajiv Gandhi Ctr Biotechnol, Trivandrum, Kerala, India
[3] Ctr Innovat & Appl Bioproc, Mohali, Punjab, India
[4] Univ Jaen, Dept Ingn Quim Ambiental & Mat Edificio, Jaen, Spain
关键词
synthetic biology; yeast; biofuel; metabolic engineering; ethanol; YARROWIA-LIPOLYTICA; SACCHAROMYCES-CEREVISIAE; HANSENULA-POLYMORPHA; GENE-EXPRESSION; HOMOLOGOUS RECOMBINATION; ALCOHOLIC FERMENTATION; KLUYVEROMYCES-LACTIS; ETHANOL-PRODUCTION; PROTEIN-PRODUCTION; ALPHA-AMYLASE;
D O I
10.3389/fenrg.2017.00008
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The increasing fossil fuel scarcity has led to an urgent need to develop alternative fuels. Currently microorganisms have been extensively used for the production of first-generation biofuels from lignocellulosic biomass. Yeast is the efficient producer of bioethanol among all existing biofuels option. Tools of synthetic biology have revolutionized the field of microbial cell factories especially in the case of ethanol and fatty acid production. Most of the synthetic biology tools have been developed for the industrial workhorse Saccharomyces cerevisiae. The non-conventional yeast systems have several beneficial traits like ethanol tolerance, thermotolerance, inhibitor tolerance, genetic diversity, etc., and synthetic biology have the power to expand these traits. Currently, synthetic biology is slowly widening to the non-conventional yeasts like Hansenula polymorpha, Kluyveromyces lactis, Pichia pastoris, and Yarrowia lipolytica. Herein, we review the basic synthetic biology tools that can apply to non-conventional yeasts. Furthermore, we discuss the recent advances employed to develop efficient biofuel-producing non-conventional yeast strains by metabolic engineering and synthetic biology with recent examples. Looking forward, future synthetic engineering tools' development and application should focus on unexplored non-conventional yeast species.
引用
收藏
页数:12
相关论文
共 104 条
[31]   Construction of a genetic toggle switch in Escherichia coli [J].
Gardner, TS ;
Cantor, CR ;
Collins, JJ .
NATURE, 2000, 403 (6767) :339-342
[32]   New yeast expression platforms based on methylotrophic Hansenula polymorpha and Pichia pastoris and on dimorphic Arxula adeninivorans and Yarrowia lipolytica -: A comparison [J].
Gellissen, G ;
Kunze, G ;
Gaillardin, C ;
Cregg, JM ;
Berardi, E ;
Veenhuis, M ;
van der Klei, I .
FEMS YEAST RESEARCH, 2005, 5 (11) :1079-1096
[33]   Application of yeasts in gene expression studies: A comparison of Saccharomyces cerevisiae, Hansenula polymorpha and Kluyveromyces lactis - a review [J].
Gellissen, G ;
Hollenberg, CP .
GENE, 1997, 190 (01) :87-97
[34]   CRISPR-Mediated Modular RNA-Guided Regulation of Transcription in Eukaryotes [J].
Gilbert, Luke A. ;
Larson, Matthew H. ;
Morsut, Leonardo ;
Liu, Zairan ;
Brar, Gloria A. ;
Torres, Sandra E. ;
Stern-Ginossar, Noam ;
Brandman, Onn ;
Whitehead, Evan H. ;
Doudna, Jennifer A. ;
Lim, Wendell A. ;
Weissman, Jonathan S. ;
Qi, Lei S. .
CELL, 2013, 154 (02) :442-451
[35]   Promoter library designed for fine-tuned gene expression in Pichia pastoris [J].
Hartner, Franz S. ;
Ruth, Claudia ;
Langenegger, David ;
Johnson, Sabrina N. ;
Hyka, Petr ;
Lin-Cereghino, Geoffrey P. ;
Lin-Cereghino, Joan ;
Kovar, Karin ;
Cregg, James M. ;
Glieder, Anton .
NUCLEIC ACIDS RESEARCH, 2008, 36 (12)
[36]   Efficient Multiplexed Integration of Synergistic Alleles and Metabolic Pathways in Yeasts via CRISPR-Cas [J].
Horwitz, Andrew A. ;
Walter, Jessica M. ;
Schubert, Max G. ;
Kung, Stephanie H. ;
Hawkins, Kristy ;
Platt, Darren M. ;
Hernday, Aaron D. ;
Mahatdejkul-Meadows, Tina ;
Szeto, Wayne ;
Chandran, Sunil S. ;
Newman, Jack D. .
CELL SYSTEMS, 2015, 1 (01) :88-96
[37]   Non-homologous end joining-mediated functional marker selection for DNA cloning in the yeast Kluyveromyces marxianus [J].
Hoshida, Hisashi ;
Murakami, Nobutada ;
Suzuki, Ayako ;
Tamura, Ryoko ;
Asakawa, Jun ;
Abdel-Banat, Babiker M. A. ;
Nonklang, Sanom ;
Nakamura, Mikiko ;
Akada, Rinji .
YEAST, 2014, 31 (01) :29-46
[38]   Improved bioethanol production in an engineered Kluyveromyces lactis strain shifted from respiratory to fermentative metabolism by deletion of NDI1 [J].
Isabel Gonzalez-Siso, Maria ;
Tourino, Alba ;
Vizoso, Angel ;
Pereira-Rodriguez, Angel ;
Rodriguez-Belmonte, Esther ;
Becerra, Manuel ;
Esperanza Cerdan, Maria .
MICROBIAL BIOTECHNOLOGY, 2015, 8 (02) :319-330
[39]   Pichia stipitis genomics, transcriptomics, and gene clusters [J].
Jeffries, Thomas W. ;
Van Vleet, Jennifer R. Headman .
FEMS YEAST RESEARCH, 2009, 9 (06) :793-807
[40]   Ethanol and thermotolerance in the bioconversion of xylose by yeasts [J].
Jeffries, TW ;
Jin, YS .
ADVANCES IN APPLIED MICROBIOLOGY, VOL 47, 2000, 47 :221-268