Explicit linear minimal free resolutions over a natural class of Rees algebras

被引:0
作者
Herzog, J [1 ]
O'Carroll, L
Popescu, D
机构
[1] Univ Essen Gesamthsch, Fachbereich Math, D-45117 Essen, Germany
[2] Univ Bucharest, Inst Math, RO-70700 Bucharest, Romania
[3] Univ Edinburgh, Dept Math & Stat, Edinburgh EH9 3JZ, Midlothian, Scotland
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1007/s00013-003-4512-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Homological properties of the Rees algebra R of a Koszul K-algebra A over a field K, with respect to the maximal homogeneous ideal, are studied. In particular, for a finitely generated graded A-module N with linear minimal free R-resolution over A, the minimal free resolution of N circle times(A) R is explicitly constructed. This resolution is again linear.
引用
收藏
页码:636 / 645
页数:10
相关论文
共 10 条
[1]  
[Anonymous], 1994, COMMUTATIVE ALGEBRA
[2]  
Backelin J., 1982, THESIS STOCKHOLM
[3]  
Backelin J., 1980, REV ROUMAINE MATH PU, V30, P85
[4]  
BARCANESCU S, 1981, REV ROUM MATH PURES, V26, P549
[5]  
Bruns W., 1993, COHEN MACAULAY RINGS
[6]   Diagonal subalgebras of bigraded algebras and embeddings of blow-ups of projective spaces [J].
Conca, A ;
Herzog, J ;
Trung, NV ;
Valla, G .
AMERICAN JOURNAL OF MATHEMATICS, 1997, 119 (04) :859-901
[7]  
EISENBUD D., 1995, Commutative Algebra with a View Toward Algebraic Geometry
[8]  
FROBERG R, 1992, COMMUN ALGEBRA, V20, P3369
[9]   Regularity of Rees algebras [J].
Herzog, J ;
Popescu, D ;
Trung, NV .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2002, 65 :320-338
[10]   ON SEGRE PRODUCTS OF AFFINE SEMIGROUP RINGS [J].
HOA, LT .
NAGOYA MATHEMATICAL JOURNAL, 1988, 110 :113-128