Exploring Realistic Nanohertz Gravitational-wave Backgrounds

被引:37
作者
Becsy, Bence [1 ,2 ]
Cornish, Neil J. J. [1 ]
Kelley, Luke Zoltan [3 ,4 ]
机构
[1] Montana State Univ, Dept Phys, eXtreme Grav Inst, Bozeman, MT 59717 USA
[2] Oregon State Univ, Dept Phys, Corvallis, OR 97331 USA
[3] CIERA Ctr Interdisciplinary Explorat & Res Astroph, Evanston, IL 60201 USA
[4] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA
关键词
BLACK-HOLE BINARIES; STATISTICAL ISOTROPY; RADIATION; LIMITS; ANISOTROPY; SYSTEMS; TIME;
D O I
10.3847/1538-4357/aca1b2
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Hundreds of millions of supermassive black hole binaries are expected to contribute to the gravitational-wave signal in the nanohertz frequency band. Their signal is often approximated either as an isotropic Gaussian stochastic background with a power-law spectrum or as an individual source corresponding to the brightest binary. In reality, the signal is best described as a combination of a stochastic background and a few of the brightest binaries modeled individually. We present a method that uses this approach to efficiently create realistic pulsar timing array data sets using synthetic catalogs of binaries based on the Illustris cosmological hydrodynamic simulation. We explore three different properties of such realistic backgrounds that could help distinguish them from those formed in the early universe: (i) their characteristic strain spectrum, (ii) their statistical isotropy, and (iii) the variance of their spatial correlations. We also investigate how the presence of confusion noise from a stochastic background affects detection prospects of individual binaries. We calculate signal-to-noise ratios of the brightest binaries in different realizations for a simulated pulsar timing array based on the NANOGrav 12.5 yr data set extended to a time span of 15 yr. We find that similar to 6% of the realizations produce systems with signal-to-noise ratios larger than 5, suggesting that individual systems might soon be detected (the fraction increases to similar to 41% at 20 yr). These can be taken as a pessimistic prediction for the upcoming NANOGrav 15 yr data set, since it does not include the effect of potentially improved timing solutions and newly added pulsars.
引用
收藏
页数:14
相关论文
共 53 条
[31]   Single sources in the low-frequency gravitational wave sky: properties and time to detection by pulsar timing arrays [J].
Kelley, Luke Zoltan ;
Blecha, Laura ;
Hernquist, Lars ;
Sesana, Alberto ;
Taylor, Stephen R. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 477 (01) :964-976
[32]   The gravitational wave background from massive black hole binaries in Illustris: spectral features and time to detection with pulsar timing arrays [J].
Kelley, Luke Zoltan ;
Blecha, Laura ;
Hernquist, Lars ;
Sesana, Alberto ;
Taylor, Stephen R. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 471 (04) :4508-4526
[33]   Massive black hole binary mergers in dynamical galactic environments [J].
Kelley, Luke Zoltan ;
Blecha, Laura ;
Hernquist, Lars .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 464 (03) :3131-3157
[34]  
Lam S. K., 2015, P 2 WORKSH LLVM COMP
[35]  
Lam Siu Kwan, 2022, Zenodo, DOI 10.5281/ZENODO.5847553
[36]   Characterizing gravitational wave stochastic background anisotropy with pulsar timing arrays [J].
Mingarelli, C. M. F. ;
Sidery, T. ;
Mandel, I. ;
Vecchio, A. .
PHYSICAL REVIEW D, 2013, 88 (06)
[37]   The local nanohertz gravitational-wave landscape from supermassive black hole binaries [J].
Mingarelli, Chiara M. F. ;
Lazio, T. Joseph W. ;
Sesana, Alberto ;
Greene, Jenny E. ;
Ellis, Justin A. ;
Ma, Chung-Pei ;
Croft, Steve ;
Burke-Spolaor, Sarah ;
Taylor, Stephen R. .
NATURE ASTRONOMY, 2017, 1 (12) :886-892
[38]  
Phinney E.S., 2001, ARXIV
[39]   Forecasting Pulsar Timing Array Sensitivity to Anisotropy in the Stochastic Gravitational Wave Background [J].
Pol, Nihan ;
Taylor, Stephen R. ;
Romano, Joseph D. .
ASTROPHYSICAL JOURNAL, 2022, 940 (02)
[40]   Astrophysics Milestones for Pulsar Timing Array Gravitational-wave Detection [J].
Pol, Nihan S. ;
Taylor, Stephen R. ;
Zoltan Kelley, Luke ;
Vigeland, Sarah J. ;
Simon, Joseph ;
Chen, Siyuan ;
Arzoumanian, Zaven ;
Baker, Paul T. ;
Becsy, Bence ;
Brazier, Adam ;
Brook, Paul R. ;
Burke-Spolaor, Sarah ;
Chatterjee, Shami ;
Cordes, James M. ;
Cornish, Neil J. ;
Crawford, Fronefield ;
Thankful Cromartie, H. ;
DeCesar, Megan E. ;
Demorest, Paul B. ;
Dolch, Timothy ;
Ferrara, Elizabeth C. ;
Fiore, William ;
Fonseca, Emmanuel ;
Garver-Daniels, Nathan ;
Good, Deborah C. ;
Hazboun, Jeffrey S. ;
Jennings, Ross J. ;
Jones, Megan L. ;
Kaiser, Andrew R. ;
Kaplan, David L. ;
Shapiro Key, Joey ;
Lam, Michael T. ;
Lazio, T. Joseph W. ;
Luo, Jing ;
Lynch, Ryan S. ;
Madison, Dustin R. ;
McEwen, Alexander ;
McLaughlin, Maura A. ;
Mingarelli, Chiara M. F. ;
Ng, Cherry ;
Nice, David J. ;
Pennucci, Timothy T. ;
Ransom, Scott M. ;
Ray, Paul S. ;
Shapiro-Albert, Brent J. ;
Siemens, Xavier ;
Stairs, Ingrid H. ;
Stinebring, Daniel R. ;
Swiggum, Joseph K. ;
Vallisneri, Michele .
ASTROPHYSICAL JOURNAL LETTERS, 2021, 911 (02)