The existence of solution for viscous Camassa-Holm equations on bounded domain in five dimensions

被引:3
作者
Yu, Yongjiang [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China
[2] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
关键词
Viscous Camassa-Holm equations; Weak solution; Strong solution; NAVIER-STOKES EQUATIONS; GLOBAL WELL-POSEDNESS; REGULARITY; SPACES; EULER; DECAY;
D O I
10.1016/j.jmaa.2015.04.038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The existence of global weak solution and local existence of strong solution for five-dimensional viscous Camassa-Holm equations on bounded domain are proved in this note. The global existence of strong solution is also proved when small initial data is given. (C) 2015 Elsevier. Inc. All rights reserved.
引用
收藏
页码:849 / 872
页数:24
相关论文
共 50 条
  • [31] The Cauchy problem for higher-order modified Camassa-Holm equations on the circle
    Yan, Wei
    Li, Yongsheng
    Zhai, Xiaoping
    Zhang, Yimin
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 187 : 397 - 433
  • [32] Integrability, existence of global solutions, and wave breaking criteria for a generalization of the Camassa-Holm equation
    da Silva, Priscila Leal
    Freire, Igor Leite
    STUDIES IN APPLIED MATHEMATICS, 2020, 145 (03) : 537 - 562
  • [33] Global existence and wave breaking for a stochastic two-component Camassa-Holm system
    Chen, Yajie
    Miao, Yingting
    Shi, Shijie
    JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (01)
  • [34] The local well-posedness and existence of weak solutions for a generalized Camassa-Holm equation
    Lai, Shaoyong
    Wu, Yonghong
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 248 (08) : 2038 - 2063
  • [35] The generalized peakon solution for the rotation-two-component Camassa-Holm system
    Jiang, Zhenwei
    Yuen, Manwai
    Zhang, Lijun
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2023, 37 (02):
  • [36] Global existence and blow-up phenomena for a periodic modified Camassa-Holm equation (MOCH)
    Luo, Zhaonan
    Qiao, Zhijun
    Yin, Zhaoyang
    APPLICABLE ANALYSIS, 2022, 101 (09) : 3432 - 3444
  • [37] Non-uniform convergence of solution for the Camassa-Holm equation in the zero-filter limit
    Li, Jinlu
    Yu, Yanghai
    Zhu, Weipeng
    MONATSHEFTE FUR MATHEMATIK, 2024, 205 (01): : 177 - 185
  • [38] Wave-breaking and weak instability for the stochastic modified two-component Camassa-Holm equations
    Zhao, Yongye
    Li, Yongsheng
    Chen, Fei
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (04):
  • [39] Global well-posedness and blow-up of solutions for the Camassa-Holm equations with fractional dissipation
    Gui, Guilong
    Liu, Yue
    MATHEMATISCHE ZEITSCHRIFT, 2015, 281 (3-4) : 993 - 1020
  • [40] Global existence of weak solutions for a three-component Camassa-Holm system with N-peakon solutions
    Luo, Wei
    Yin, Zhaoyang
    IMA JOURNAL OF APPLIED MATHEMATICS, 2016, 81 (06) : 1096 - 1111