Routes to Achieving High Quantum Yield Luminescence from Gas-Phase-Produced Silicon Nanocrystals

被引:78
作者
Anthony, Rebecca J. [1 ]
Rowe, David J. [1 ]
Stein, Matthias [2 ]
Yang, Jihua [1 ]
Kortshagen, Uwe [1 ]
机构
[1] Univ Minnesota, Dept Mech Engn, Minneapolis, MN 55455 USA
[2] Univ Duisburg Essen, Dept Elect Mat & Nanostruct, Essen, Germany
关键词
LIGHT-EMITTING DEVICES; PLASMA SYNTHESIS; SI NANOCRYSTALS; PHOTOLUMINESCENCE; NANOPARTICLES; EMISSION; DOTS;
D O I
10.1002/adfm.201100784
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Plasma-synthesized silicon nanocrystals with alkene ligands have shown the potential to exhibit high-efficiency photoluminescence, but results reported in the literature have been inconsistent. Here, for the first time, the role of the immediate post-synthesis "afterglow plasma" environment is explored. The significant impact of gas injection into the afterglow plasma on the photoluminescence efficiency of silicon nanocrystals is reprorted. Depending on the afterglow conditions, photoluminescence quantum yields of silicon nanocrystals synthesized under otherwise identical conditions can vary by a factor of almost five. It is demonstrated that achieving a fast quenching of the particle temperature and a high flux of atomic hydrogen to the nanocrystal surface are essential for a high photoluminescence quantum yield of the produced silicon nanocrystals.
引用
收藏
页码:4042 / 4046
页数:5
相关论文
共 26 条
[1]   Multiple exciton generation in colloidal silicon nanocrystals [J].
Beard, Matthew C. ;
Knutsen, Kelly P. ;
Yu, Pingrong ;
Luther, Joseph M. ;
Song, Qing ;
Metzger, Wyatt K. ;
Ellingson, Randy J. ;
Nozik, Arthur J. .
NANO LETTERS, 2007, 7 (08) :2506-2512
[2]   Nanocrystalline silicon as the light emitting material of a field emission display device [J].
Biaggi-Labiosa, A. ;
Sola, F. ;
Resto, O. ;
Fonseca, L. F. ;
Gonzalez-Berrios, A. ;
De Jesus, J. ;
Morell, G. .
NANOTECHNOLOGY, 2008, 19 (22)
[3]   Hybrid Silicon Nanocrystal-Organic Light-Emitting Devices for Infrared Electroluminescence [J].
Cheng, Kai-Yuan ;
Anthony, Rebecca ;
Kortshagen, Uwe R. ;
Holmes, Russell J. .
NANO LETTERS, 2010, 10 (04) :1154-1157
[4]   Effect of particle size on the photoluminescence from hydrogen passivated Si nanocrystals in SiO2 [J].
Cheylan, S ;
Elliman, RG .
APPLIED PHYSICS LETTERS, 2001, 78 (13) :1912-1914
[5]   Biocompatible luminescent silicon quantum dots for imaging of cancer cells [J].
Erogbogbo, Folarin ;
Yong, Ken-Tye ;
Roy, Indrajit ;
Xu, GaiXia ;
Prasad, Paras N. ;
Swihart, Mark T. .
ACS NANO, 2008, 2 (05) :873-878
[6]   Classification and control of the origin of photoluminescence from Si nanocrystals [J].
Godefroo, S. ;
Hayne, M. ;
Jivanescu, M. ;
Stesmans, A. ;
Zacharias, M. ;
Lebedev, O. I. ;
Van Tendeloo, G. ;
Moshchalkov, V. V. .
NATURE NANOTECHNOLOGY, 2008, 3 (03) :174-178
[7]   Luminescent Colloidal Dispersion of Silicon Quantum Dots from Microwave Plasma Synthesis: Exploring the Photoluminescence Behavior Across the Visible Spectrum [J].
Gupta, Anoop ;
Swihart, Mark T. ;
Wiggers, Hartmut .
ADVANCED FUNCTIONAL MATERIALS, 2009, 19 (05) :696-703
[8]   Identification and control of the origin of photoluminescence from silicon quantum dots [J].
Hao, H. L. ;
Shen, W. Z. .
NANOTECHNOLOGY, 2008, 19 (45)
[9]   Synthesis and characterization of strongly luminescing ZnS-Capped CdSe nanocrystals [J].
Hines, MA ;
Guyot-Sionnest, P .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (02) :468-471
[10]   Modifying the composition of hydrogen-terminated silicon nanoparticles synthesized in a nonthermal rf plasma [J].
Holm, Jason ;
Roberts, Jeffrey T. .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2010, 28 (02) :161-169