Global solvability and asymptotic behavior in a two-species chemotaxis system with two chemicals

被引:0
作者
Yang, Hongying [1 ,2 ]
Tu, Xinyu [3 ]
Yang, Li [1 ]
机构
[1] Chongqing Univ, Coll Math & Stat, Chongqing 401331, Peoples R China
[2] Shihezi Univ, Sch Sci, Shihezi, Peoples R China
[3] Southwest Univ, Sch Math & Stat, Chongqing, Peoples R China
基金
中国博士后科学基金;
关键词
asymptotic behavior; chemotaxis; Lotka-Volterra; weak solution; TIME BLOW-UP; COMPETITION SYSTEM; WEAK SOLUTIONS; BOUNDEDNESS; STABILITY; STABILIZATION; MODEL; EXISTENCE; EQUILIBRATION;
D O I
10.1002/mma.8269
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with a two-species chemotaxis system with Lotka-Volterra competitive kinetics {u(t) = Delta u - chi(1)del . (u del v) + mu(1)u(1 - u - a(1)w), x is an element of Omega, t > 0, v(t) = Delta v - v + w, x is an element of Omega, t > 0, w(t) = Delta w - chi(2)del . (w del z) + mu(2)w(1 - w - a(2)u), x is an element of Omega, t > 0, z(t) = Delta z - z + u, x is an element of Omega, t > 0, under homogeneous Neumann boundary condition in a smooth domain Omega subset of R-n(n >= 1), where the parameters chi(i), mu(i), and a(i) are positive constants for i = 1, 2. Under appropriate regularity assumptions on the initial data, we obtain that the system possesses a globally bounded weak solution. Furthermore, we establish the asymptotic stabilization of this weak solution by constructing suitable energy functions in both coexistence and extinction cases.
引用
收藏
页码:7663 / 7684
页数:22
相关论文
共 47 条
  • [1] Amann H, 1993, NONHOMOGENEOUS LINEA
  • [2] Keller-Segel Chemotaxis Models: A Review
    Arumugam, Gurusamy
    Tyagi, Jagmohan
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2021, 171 (01)
  • [3] Bai XL, 2016, INDIANA U MATH J, V65, P553
  • [4] Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues
    Bellomo, N.
    Bellouquid, A.
    Tao, Y.
    Winkler, M.
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2015, 25 (09) : 1663 - 1763
  • [5] GLOBAL EXISTENCE AND ASYMPTOTIC STABILITY IN A COMPETITIVE TWO-SPECIES CHEMOTAXIS SYSTEM WITH TWO SIGNALS
    Black, Tobias
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2017, 22 (04): : 1253 - 1272
  • [6] A Note on Aubin-Lions-DubinskiA Lemmas
    Chen, Xiuqing
    Juengel, Ansgar
    Liu, Jian-Guo
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2014, 133 (01) : 33 - 43
  • [7] Remarks on the blowup and global existence for a two species chemotactic Keller-Segel system in R2
    Conca, Carlos
    Espejo, Elio
    Vilches, Karina
    [J]. EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2011, 22 : 553 - 580
  • [8] A user's guide to PDE models for chemotaxis
    Hillen, T.
    Painter, K. J.
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 2009, 58 (1-2) : 183 - 217
  • [9] Boundedness and stabilization in a two-species chemotaxis-competition system with signal-dependent diffusion and sensitivity
    Jin, Hai-Yang
    Liu, Zhengrong
    Shi, Shijie
    Xu, Jiao
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 267 (01) : 494 - 524
  • [10] INITIATION OF SLIME MOLD AGGREGATION VIEWED AS AN INSTABILITY
    KELLER, EF
    SEGEL, LA
    [J]. JOURNAL OF THEORETICAL BIOLOGY, 1970, 26 (03) : 399 - &