Phase transitions in two-dimensional Z(N) vector models for N > 4

被引:17
|
作者
Borisenko, O. [1 ]
Chelnokov, V. [1 ]
Cortese, G. [2 ,3 ,4 ,5 ]
Fiore, R. [4 ,5 ]
Gravina, M. [6 ]
Papa, A. [4 ,5 ]
机构
[1] Natl Acad Sci Ukraine, Bogolyubov Inst Theoret Phys, UA-03680 Kiev, Ukraine
[2] Inst Fis Teor UAM CSIC, E-28049 Madrid, Spain
[3] Univ Zaragoza, Dept Fis Teor, E-50009 Zaragoza, Spain
[4] Univ Calabria, Dipartimento Fis, I-87036 Cosenza, Italy
[5] Ist Nazl Fis Nucl, Grp Collegato Cosenza, I-87036 Cosenza, Italy
[6] Univ Cyprus, Dept Phys, Nicosia, Cyprus
来源
PHYSICAL REVIEW E | 2012年 / 85卷 / 02期
关键词
KOSTERLITZ-THOULESS TRANSITION; PRECISION MONTE-CARLO; XY-MODEL; DIMENSIONS; COULOMB GAS; SUPERFLUID DENSITY; ABELIAN SPIN; SYSTEMS;
D O I
10.1103/PhysRevE.85.021114
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate both analytically and numerically the renormalization group equations in two-dimensional (2D) Z(N) vector models. The position of the critical points of the two phase transitions for N > 4 is established and the critical index. is computed. For N = 7 and 17 the critical points are located by Monte Carlo simulations, and some of the corresponding critical indices are determined. The behavior of the helicity modulus is studied for N = 5, 7, and 17. Using these and other available Monte Carlo data we discuss the scaling of the critical points with N and some other open theoretical problems.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Numerical study of the phase transitions in the two-dimensional Z(5) vector model
    Borisenko, O.
    Cortese, G.
    Fiore, R.
    Gravina, M.
    Papa, A.
    PHYSICAL REVIEW E, 2011, 83 (04):
  • [2] Phase transitions in strongly coupled three-dimensional Z(N) lattice gauge theories at finite temperature
    Borisenko, O.
    Chelnokov, V.
    Cortese, G.
    Fiore, R.
    Gravina, M.
    Papa, A.
    Surzhikov, I.
    PHYSICAL REVIEW E, 2012, 86 (05):
  • [3] Berezinskii-Kosterlitz-Thouless phase transitions in two-dimensional non-Abelian spin models
    Borisenko, Oleg
    Chelnokov, Volodymyr
    Cuteri, Francesca
    Papa, Alessandro
    PHYSICAL REVIEW E, 2016, 94 (01)
  • [4] Two-dimensional O(n) models and logarithmic CFTs
    Gorbenko, Victor
    Zan, Bernardo
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (10)
  • [5] Dynamic phase transitions in a two-dimensional electronic crystal and in a two-dimensional helium film
    Syvokon, V. E.
    Nasedkin, K. A.
    LOW TEMPERATURE PHYSICS, 2012, 38 (01) : 6 - 15
  • [6] Phase transitions in the two-dimensional ferro- and antiferromagnetic potts models on a triangular lattice
    Murtazaev, A. K.
    Babaev, A. B.
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2012, 115 (06) : 1042 - 1047
  • [7] Topological phase transitions in two-dimensional bent-core liquid crystal models
    Latha, B. Kamala
    Dhara, Surajit
    Sastry, V. S. S.
    PHYSICAL REVIEW E, 2021, 104 (06)
  • [8] Thermodynamics and phase transitions in two-dimensional Yukawa systems
    Vaulina, O. S.
    Koss, X. G.
    PHYSICS LETTERS A, 2014, 378 (46) : 3475 - 3479
  • [9] On the integrability of two-dimensional models with U(1) x SU(N) symmetry
    Basso, Benjamin
    Rej, Adam
    NUCLEAR PHYSICS B, 2013, 866 (03) : 337 - 377
  • [10] Incommensurability and phase transitions in two-dimensional X Y models with Dzyaloshinskii-Moriya interactions
    Liu, Huiping
    Plascak, J. A.
    Landau, D. P.
    PHYSICAL REVIEW E, 2018, 97 (05)