Deep Learning Based Approach Implemented to Image Super-Resolution

被引:4
|
作者
Thuong Le-Tien [1 ]
Tuan Nguyen-Thanh
Hanh-Phan Xuan
Giang Nguyen-Truong
Vinh Ta-Quoc
机构
[1] Ho Chi Minh City Univ Technol HCMUT, 268 Ly Thuong Kiet St,Dist 10, Ho Chi Minh City, Vietnam
关键词
image super-resolution; deep learning; inverse problems; Residual in Residual Dense Network (RRDN); Generative Adversarial Network (GAN); Enhanced Super-Resolution Generative Adversarial Networks (ESRGAN);
D O I
10.12720/jait.11.4.209-216
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The aim of this research is about application of deep learning approach to the inverse problem, which is one of the most popular issues that has been concerned for many years about, the image Super-Resolution (SR). From then on, many fields of machine learning and deep learning have gained a lot of momentum in solving such imaging problems. In this article, we review the deep-learning techniques for solving the image super-resolution especially about the Generative Adversarial Network (GAN) technique and discuss other ways to use the GAN for an efficient solution on the task. More specifically, we review about the Enhanced Super-Resolution Generative Adversarial Network (ESRGAN) and Residual in Residual Dense Network (RRDN) that are introduced by 'idealo' team and evaluate their results for image SR, they had generated precise results that gained the high rank on the leader board of state-of-the-art techniques with many other datasets like Set5, Set14 or DIV2K, etc. To be more specific, we will also review the Single-Image Super-Resolution using Generative Adversarial Network (SRGAN) and the Enhanced Super-Resolution Generative Adversarial Networks (ESRGAN), two famous state-of-the-art techniques, by re-train the proposed model with different parameter and comparing with their result. So that can be helping us understand the working of announced model and the different when we choose others parameter compared to theirs.
引用
收藏
页码:209 / 216
页数:8
相关论文
共 50 条
  • [21] Image super-resolution reconstruction based on deep dictionary learning and A+
    Yi Huang
    Weixin Bian
    Biao Jie
    Zhiqiang Zhu
    Wenhu Li
    Signal, Image and Video Processing, 2024, 18 : 2629 - 2641
  • [22] A deep learning method for image super-resolution based on geometric similarity
    Lu, Jian
    Hu, Weidong
    Sun, Yi
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2019, 70 : 210 - 219
  • [23] An improved method for single image super-resolution based on deep learning
    Chao Xie
    Ying Liu
    Weili Zeng
    Xiaobo Lu
    Signal, Image and Video Processing, 2019, 13 : 557 - 565
  • [24] Image Super-resolution Reconstruction based on Deep Learning and Sparse Representation
    Lei, Qian
    Zhang, Zhao-hui
    Hao, Cun-ming
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTER NETWORKS AND COMMUNICATION TECHNOLOGY (CNCT 2016), 2016, 54 : 546 - 555
  • [25] A Review of Image Super-Resolution Approaches Based on Deep Learning and Applications in Remote Sensing
    Wang, Xuan
    Yi, Jinglei
    Guo, Jian
    Song, Yongchao
    Lyu, Jun
    Xu, Jindong
    Yan, Weiqing
    Zhao, Jindong
    Cai, Qing
    Min, Haigen
    REMOTE SENSING, 2022, 14 (21)
  • [26] Accelerating topology optimization using deep learning-based image super-resolution
    Lim, Jaekyung
    Jung, Kyusoon
    Jung, Youngsuk
    Kim, Do-Nyun
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133
  • [27] Deep Learning for Multiple-Image Super-Resolution
    Kawulok, Michal
    Benecki, Pawel
    Piechaczek, Szymon
    Hrynczenko, Krzysztof
    Kostrzewa, Daniel
    Nalepa, Jakub
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (06) : 1062 - 1066
  • [28] Deep Learning for Remote Sensing Image Super-Resolution
    Ul Hoque, Md Reshad
    Burks, Roland, III
    Kwan, Chiman
    Li, Jiang
    2019 IEEE 10TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2019, : 286 - 292
  • [29] Deep Learning-Based Single-Image Super-Resolution: A Comprehensive Review
    Chauhan, Karansingh
    Patel, Shail Nimish
    Kumhar, Malaram
    Bhatia, Jitendra
    Tanwar, Sudeep
    Davidson, Innocent Ewean
    Mazibuko, Thokozile F. F.
    Sharma, Ravi
    IEEE ACCESS, 2023, 11 : 21811 - 21830
  • [30] A Review of Single Image Super-Resolution Reconstruction Based on Deep Learning
    Wu J.
    Ye X.-J.
    Huang F.
    Chen L.-Q.
    Wang Z.-F.
    Liu W.-X.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2022, 50 (09): : 2265 - 2294