Thermoeconomic analysis of a CO2 plume geothermal and supercritical CO2 Brayton combined cycle using solar energy as auxiliary heat source

被引:29
|
作者
Qiao, Zongliang [1 ]
Cao, Yue [1 ]
Li, Peiyu [1 ]
Wang, Xingchao [2 ]
Romero, Carlos E. [2 ]
Pan, Lehua [3 ]
机构
[1] Southeast Univ, Key Lab Energy Thermal Convers & Control, Minist Educ, Nanjing 210096, Peoples R China
[2] Lehigh Univ, Energy Res Ctr, Bethlehem, PA 18015 USA
[3] Univ Calif Berkeley, Energy Geosci Div, Lawrence Berkeley Nat Lab, Berkeley, CA 94720 USA
基金
中国国家自然科学基金;
关键词
CO2 plume geothermal; Supercritical CO2 Brayton cycle; Auxiliary solar energy system; Thermoeconomic analysis; Optimization; POWER CYCLE; EXERGY ANALYSIS; GAS-TURBINE; ELECTRIC-POWER; WORKING FLUID; SYSTEMS; OPTIMIZATION; DESIGN; RESERVOIR; STORAGE;
D O I
10.1016/j.jclepro.2020.120374
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study presents an investigation of a CO2 plume geothermal and supercritical CO2 Brayton (CPGs-CO2) combined cycle using solar energy as auxiliary heat source. This combined cycle may help solve the problems of CO2 sequestration and geothermal energy utilization simultaneously. The CPG production is heated by a solar power generation system with solar tower and molten salt. Then a recompression sCO(2) cycle utilizes geothermal energy and solar energy directly. A solution procedure is performed to analyze the thermoeconomic performance of the CPG-sCO(2) combined cycle. Results show that the combined cycle has an optimal main compressor inlet pressure and split ratio for maximum combined cycle efficiency. It can achieve 19.57% by genetic algorithm (GA) optimization, which is 5.65% and 4.07% higher than CPG systems with indirect sCO(2) cycle and organic Rankine cycle, respectively. Moreover, it indicates that the combined cycle efficiency and total capital cost have opposite variation trends with the increase of parameters, including main compressor inlet pressure (p(5)), split ratio (sr), well distance (d(8,11)) and injection temperature (T-8). Based on multi-objective GA optimization and optimal solution selection, it is concluded that the most thermoeconomic CPG-sCO(2) combined cycle has a combined cycle efficiency of 18.09% and a total capital cost of $5.959 x 10(7), respectively. Findings suggest that the CPG-sCO(2) combined cycle has potential to combine CO2 sequestration with geothermal energy utilization. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Thermodynamic Comparison and Optimization of Supercritical CO2 Brayton Cycles with a Bottoming Transcritical CO2 Cycle
    Wang, Xurong
    Wang, Jiangfeng
    Zhao, Pan
    Dai, Yiping
    JOURNAL OF ENERGY ENGINEERING, 2016, 142 (03)
  • [32] THERMO-ECONOMIC ANALYSIS OF A RECOMPRESSION SUPERCRITICAL CO2 CYCLE COMBINED WITH A TRANSCRITICAL CO2 CYCLE
    Wang, Xurong
    Wu, Yi
    Wang, Jiangfeng
    Dai, Yiping
    Xie, Danmei
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2015, VOL 9, 2015,
  • [33] DEVELOPMENT OF A CERAMIC PRESSURIZED VOLUMETRIC SOLAR RECEIVER FOR SUPERCRITICAL CO2 BRAYTON CYCLE
    Khivsara, S. D.
    Das, Rathindra Nath
    Thyagaraj, T. L.
    Dhar, Shriya
    Srinivasan, V.
    Dutta, P.
    PROCEEDINGS OF THE ASME 8TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY, 2014, VOL 1, 2014,
  • [34] PDF-based modeling on the turbulent convection heat transfer of supercritical CO2 in the printed circuit heat exchangers for the supercritical CO2 Brayton cycle
    Li, Hongzhi
    Zhang, Yifan
    Zhang, Lixin
    Yao, Mingyu
    Kruizenga, Alan
    Anderson, Mark
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2016, 98 : 204 - 218
  • [35] Design of a composite receiver for solar-driven supercritical CO2 Brayton cycle
    Teng, Liang
    Xuan, Yimin
    JOURNAL OF CO2 UTILIZATION, 2019, 32 : 290 - 298
  • [36] A towered solar thermal power plant based on supercritical CO2 brayton cycle
    Wu Y.
    Wang J.
    Wang M.
    Dai Y.
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2016, 50 (05): : 108 - 113
  • [37] Thermodynamic study of supercritical CO2 Brayton cycle using an isothermal compressor
    Heo, Jin Young
    Kim, Min Seok
    Baik, Seungjoon
    Bae, Seong Jun
    Lee, Jeong Ik
    APPLIED ENERGY, 2017, 206 : 1118 - 1130
  • [38] Modeling and Simulating Supercritical CO2 Brayton Cycle in SMR using Modelica
    Yang, Yinglin
    Guo, Qixun
    Lin, Jianshu
    Zhang, Yaoli
    Ye, Kai
    Bian, BoShen
    Li, Zhuocheng
    PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON NUCLEAR ENGINEERING, 2017, VOL 3, 2017,
  • [39] Dynamic Modeling and Transient Analysis of a Recompression Supercritical CO2 Brayton Cycle
    Zhou, Pan
    Zhang, Jinyi
    Le Moullec, Yann
    INTERNATIONAL CONFERENCE ON CONCENTRATING SOLAR POWER AND CHEMICAL ENERGY SYSTEMS (SOLARPACES 2019), 2020, 2303
  • [40] BRAYTON CYCLE SUPERCRITICAL CO2 POWER BLOCK FOR INDUSTRIAL WASTE HEAT RECOVERY
    Sathish, Sharath
    Kumar, Pramod
    Nagarathinam, Logesh
    Swami, Lokesh
    Namburi, Adi Narayana
    Bandarupalli, Venkata Subbarao
    Gopi, Pramod Chandra
    PROCEEDINGS OF THE ASME GAS TURBINE INDIA CONFERENCE, 2019, VOL 2, 2020,