Frame-validity games and lower bounds on the complexity of modal axioms

被引:2
作者
Balbiani, Philippe [1 ]
Fernandez-Duque, David [2 ]
Herzig, Andreas [1 ]
Iliev, Petar [3 ]
机构
[1] Toulouse Univ, CNRS, IRIT, F-31062 Toulouse, France
[2] Univ Ghent, Dept Math, B-9000 Ghent, Belgium
[3] Bulgarian Acad Sci, Inst Philosophy & Sociol, Sofia 1000, Bulgaria
关键词
Modal logic; correspondence theory; formula-size games; lower bounds on formula-size; SUCCINCTNESS;
D O I
10.1093/jigpal/jzaa068
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce frame-equivalence games tailored for reasoning about the size, modal depth, number of occurrences of symbols and number of different propositional variables of modal formulae defining a given frame property. Using these games, we prove lower bounds on the above measures for a number of well-known modal axioms; what is more, for some of the axioms, we show that they are optimal among the formulae defining the respective class of frames.
引用
收藏
页码:155 / 185
页数:31
相关论文
共 27 条
  • [1] Adler M., 2003, ACM Transactions on Computational Logic, V4, P296, DOI 10.1145/772062.772064
  • [2] [Anonymous], 2011, P IJCAI
  • [3] [Anonymous], 2010, P ADV MODAL LOGIC
  • [4] [Anonymous], 1999, Descriptive Complexity
  • [5] [Anonymous], 2006, P 5 INT JOINT C AUT, P137, DOI DOI 10.1145/1160633.1160657
  • [6] Balbiani Philippe, 2007, Fundamenta Informaticae, V81, P29
  • [7] Balbiani P., 2018, P ADV MODAL LOGIC, P83
  • [8] Chagrov A.V., 1997, MODAL LOGIC, V35
  • [9] EBBINGHAUS H. -D., 1995, FINITE MODEL THEORY
  • [10] Ehrenfeucht A., 1961, FUND MATH, V49, P129, DOI [10.4064/fm-49-2-129-141, DOI 10.4064/FM-49-2-129-141]