Elevated CO2 and temperature impacts on different components of soil CO2 efflux in Douglas-fir terracosms

被引:134
|
作者
Lin, GH
Ehleringer, JR
Rygiewicz, PT
Johnson, MG
Tingey, DT
机构
[1] Univ Utah, Dept Biol, Stable Isotope Ratio Facil Environm Res, Salt Lake City, UT 84112 USA
[2] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA
[3] US EPA, Natl Hlth & Environm Effects Res Lab, Corvallis, OR 97333 USA
关键词
elevated CO2; forest ecosystem; global warming; soil respiration; stable isotopes;
D O I
10.1046/j.1365-2486.1999.00211.x
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
Although numerous studies indicate that increasing atmospheric CO2 or temperature data are available on the responses of three major components of soil respiration [i.e. rhizosphere respiration (root and root exudates), litter decomposition, and oxidation of soil organic matter] to different CO2 and temperature conditions. In this study, we applied a dual stable isotope approach to investigate the impact of elevated CO2 and elevated temperature on these components of soil CO2 efflux in Douglas-fir terracosms. We measured both soil CO2 efflux rates and the C-13 and O-18 isotopic compositions of soil CO2 efflux in 12 sun-lit and environmentally controlled terracosms with 4-year-old Douglas fir seedlings and reconstructed forest soils under two CO2 concentrations (ambient and 200 ppmv above ambient) and two air temperature regimes (ambient and 4 degrees C above ambient). The stable isotope data were used to estimate the relative contributions of different components to the overall soil CO2 efflux. In most cases, litter decomposition was the dominant component of soil CO2 efflux in this system, followed by rhizosphere respiration and soil organic matter oxidation. Both elevated atmospheric CO2 concentration and elevated temperature stimulated rhizosphere respiration and litter decomposition. The oxidation of soil organic matter was stimulated only by increasing temperature. Release of newly fixed carbon as root respiration was the most responsive to elevated CO2, while soil organic matter decomposition was most responsive to increasing temperature. Although some assumptions associated with this new method need to be further validated, application of this dual-isotope approach can provide new insights into the responses of soil carbon dynamics in forest ecosystems to future climate changes.
引用
收藏
页码:157 / 168
页数:12
相关论文
共 50 条
  • [21] Dynamics of Soil CO2 Efflux and Vertical CO2 Production in a European Beech and a Scots Pine Forest
    Jochheim, Hubert
    Wirth, Stephan
    Gartiser, Valentin
    Paulus, Sinikka
    Haas, Christoph
    Gerke, Horst H.
    Maier, Martin
    FRONTIERS IN FORESTS AND GLOBAL CHANGE, 2022, 5
  • [22] Soil CO2 efflux in a boreal pine forest under atmospheric CO2 enrichment and air warming
    Niinistö, SM
    Silvola, J
    Kellomäki, S
    GLOBAL CHANGE BIOLOGY, 2004, 10 (08) : 1363 - 1376
  • [23] Soil CO2 efflux following rotary tillage of a tropical soil
    La Scala, N
    Lopes, A
    Panosso, AR
    Camara, FT
    Pereira, GT
    SOIL & TILLAGE RESEARCH, 2005, 84 (02) : 222 - 225
  • [24] Moisture and soil texture effects on Soil CO2 efflux components in southeastern mixed pine forests
    Dilustro, JJ
    Collins, B
    Duncan, L
    Crawford, C
    FOREST ECOLOGY AND MANAGEMENT, 2005, 204 (01) : 85 - 95
  • [25] Influence of repeated canopy scorching on soil CO2 efflux
    Aubrey, Doug P.
    Mortazavi, Behzad
    O'Brien, Joseph J.
    McGee, Jason D.
    Hendricks, Joseph J.
    Kuehn, Kevin A.
    Teskey, Robert O.
    Mitchell, Robert J.
    FOREST ECOLOGY AND MANAGEMENT, 2012, 282 : 142 - 148
  • [26] Soil CO2 efflux in a tropical forest in the central Amazon
    Sotta, ED
    Meir, P
    Malhi, Y
    Nobre, AD
    Hodnett, M
    Grace, J
    GLOBAL CHANGE BIOLOGY, 2004, 10 (05) : 601 - 617
  • [27] Different Structure of Sessile Oak Stands Affects Soil Moisture and Soil CO2 Efflux
    Darenova, Eva
    Cater, Matjaz
    FOREST SCIENCE, 2018, 64 (03) : 340 - 348
  • [28] CO2 efflux and microbial activities in undisturbed soil columns in different nitrogen management
    Molnar, E.
    Szili-Kovacs, T.
    Villanyi, I.
    Knab, M.
    Balint, A.
    Kristof, K.
    Heltai, G.
    PLANT SOIL AND ENVIRONMENT, 2016, 62 (09) : 402 - 407
  • [29] Methane and soil CO2 production from current-season photosynthates in a rice paddy exposed to elevated CO2 concentration and soil temperature
    Tokida, Takeshi
    Adachi, Minaco
    Cheng, Weiguo
    Nakajima, Yasuhiro
    Fumoto, Tamon
    Matsushima, Miwa
    Nakamura, Hirofumi
    Okada, Masumi
    Sameshima, Ryoji
    Hasegawa, Toshihiro
    GLOBAL CHANGE BIOLOGY, 2011, 17 (11) : 3327 - 3337
  • [30] Different harvest intensity and soil CO2 efflux in sessile oak coppice forests
    Darenova, Eva
    Cater, Matjaz
    Pavelka, Marian
    IFOREST-BIOGEOSCIENCES AND FORESTRY, 2016, 9 : 546 - 552