Separating Sets on Semi-Weighted Homogeneous Hypersurface Singularities

被引:0
作者
Fernandes, Alexandre [1 ,2 ]
机构
[1] Univ Fed Ceara, Dept Matemat, BR-60455760 Fortaleza, Ceara, Brazil
[2] USP, Inst Ciencias Matemat & Comp, BR-13566590 Sao Carlos, SP, Brazil
关键词
Bi-Lipschitz; complex singularity; GEOMETRY;
D O I
10.1007/s00025-011-0145-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show the existence of separating sets on a class of semi-weighted homogeneous hypersurface singularities with weights w (1) a parts per thousand yen w (2) > w (3). In particular we show that these hypersurfaces are not metrically conical.
引用
收藏
页码:361 / 367
页数:7
相关论文
共 7 条
  • [1] Inner metric geometry of complex algebraic surfaces with isolated singularities
    Birbrair, Lev
    Fernandes, Alexandre
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2008, 61 (11) : 1483 - 1494
  • [2] Bi-Lipschitz geometry of weighted homogeneous surface singularities
    Birbrair, Lev
    Fernandes, Alexandre
    Neumann, Walter D.
    [J]. MATHEMATISCHE ANNALEN, 2008, 342 (01) : 139 - 144
  • [3] Separating sets, metric tangent cone and applications for complex algebraic germs
    Birbrair, Lev
    Fernandes, Alexandre
    Neumann, Walter D.
    [J]. SELECTA MATHEMATICA-NEW SERIES, 2010, 16 (03): : 377 - 391
  • [4] Bi-Lipschitz geometry of complex surface singularities
    Birbrair, Lev
    Fernandes, Alexandre
    Neumann, Walter D.
    [J]. GEOMETRIAE DEDICATA, 2009, 139 (01) : 259 - 267
  • [5] FAST LOOPS ON SEMI-WEIGHTED HOMOGENEOUS HYPERSURFACE SINGULARITIES
    Fernandes, Alexandre
    [J]. JOURNAL OF SINGULARITIES, 2010, 1 : 85 - 93
  • [6] Modified analytic trivialization for weighted homogeneous function-germs
    Fukui, T
    Paunescu, L
    [J]. JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2000, 52 (02) : 433 - 446
  • [7] SUBANALYTIC-SET DENSITY
    KURDYKA, K
    RABY, G
    [J]. ANNALES DE L INSTITUT FOURIER, 1989, 39 (03) : 753 - 771