Lean-electrolyte lithium-sulfur batteries: Recent advances in the design of cell components

被引:45
作者
Jeoun, Yunseo [1 ,2 ]
Kim, Min-Seob [1 ,2 ]
Lee, Si-Hwan [3 ]
Um, Ji Hyun [3 ]
Sung, Yung-Eun [1 ,2 ]
Yu, Seung-Ho [3 ]
机构
[1] Seoul Natl Univ SNU, Sch Chem & Biol Engn, Seoul 08826, South Korea
[2] Inst Basic Sci IBS, Ctr Nanoparticle Res, Seoul 08826, South Korea
[3] Korea Univ, Dept Chem & Biol Engn, Seoul 02841, South Korea
基金
新加坡国家研究基金会;
关键词
Lithium-sulfur batteries; Lean electrolyte; Cell components; Electrolyte; sulfur ratio; LI-S BATTERIES; HIGH-PERFORMANCE; ENERGY-DENSITY; METAL ANODE; POLYSULFIDE-SHUTTLE; FULL-CELL; DENDRITE-FREE; CARBON; CATHODE; CAPACITY;
D O I
10.1016/j.cej.2022.138209
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Lithium-sulfur batteries (LSBs) have attracted considerable attention as next-generation secondary battery due to their significantly higher theoretical energy density (2,600 Wh kg-1) compared to that of commercialized lithium-ion batteries (LIBs). In the last decade, most of the achievements in LSBs were attained based on excessive electrolyte usage. However, high electrolyte/sulfur ratio (E/S ratio) conditions degrade not only cost competitiveness but also actual energy density, eventually hindering the commercialization of LSBs. Therefore, it is essential to develop lean-electrolyte LSBs exhibiting excellent performance with advanced components even under harsh internal environments. In this perspective, this review focuses on the state-of-the-art advances of LSBs under lean electrolyte conditions and categorizes imperative strategies to overcome its serious problems.
引用
收藏
页数:22
相关论文
共 149 条
[31]   Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism [J].
Ding, Fei ;
Xu, Wu ;
Graff, Gordon L. ;
Zhang, Jian ;
Sushko, Maria L. ;
Chen, Xilin ;
Shao, Yuyan ;
Engelhard, Mark H. ;
Nie, Zimin ;
Xiao, Jie ;
Liu, Xingjiang ;
Sushko, Peter V. ;
Liu, Jun ;
Zhang, Ji-Guang .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (11) :4450-4456
[32]   Challenges and Key Parameters of Lithium-Sulfur Batteries on Pouch Cell Level [J].
Doerfler, Susanne ;
Althues, Holger ;
Haertel, Paul ;
Abendroth, Thomas ;
Schumm, Benjamin ;
Kaskel, Stefan .
JOULE, 2020, 4 (03) :539-554
[33]   Morphological and Structural Studies of Composite Sulfur Electrodes upon Cycling by HRTEM, AFM and Raman Spectroscopy [J].
Elazari, Ran ;
Salitra, Gregory ;
Talyosef, Yossi ;
Grinblat, Judith ;
Scordilis-Kelley, Charislea ;
Xiao, Ang ;
Affinito, John ;
Aurbach, Doron .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (10) :A1131-A1138
[34]   Reaction Mechanism Optimization of Solid-State Li-S Batteries with a PEO-Based Electrolyte [J].
Fang, Ruyi ;
Xu, Henghui ;
Xu, Biyi ;
Li, Xinyu ;
Li, Yutao ;
Goodenough, John B. .
ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (02)
[35]   Lithiophilic N-doped carbon bowls induced Li deposition in layered graphene film for advanced lithium metal batteries [J].
Feng, Xiaoyu ;
Wu, Hong-Hui ;
Gao, Biao ;
Swietoslawski, Michal ;
He, Xin ;
Zhang, Qiaobao .
NANO RESEARCH, 2022, 15 (01) :352-360
[36]   Significantly Raising the Cell Performance of Lithium Sulfur Battery via the Multifunctional Polyaniline Binder [J].
Gao, Hong ;
Lu, Qi ;
Yao, Yujie ;
Wang, Xianhong ;
Wang, Fosong .
ELECTROCHIMICA ACTA, 2017, 232 :414-421
[37]   Highly Efficient and Exceptionally Durable CO2 Photoreduction to Methanol over Freestanding Defective Single-Unit-Cell Bismuth Vanadate Layers [J].
Gao, Shan ;
Gu, Bingchuan ;
Jiao, Xingchen ;
Sun, Yongfu ;
Zu, Xiaolong ;
Yang, Fan ;
Zhu, Wenguang ;
Wang, Chengming ;
Feng, Zimou ;
Ye, Bangjiao ;
Xie, Yi .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (09) :3438-3445
[38]   Cell energy density and electrolyte/sulfur ratio in Li-S cells [J].
Hagen, M. ;
Fanz, P. ;
Tuebke, J. .
JOURNAL OF POWER SOURCES, 2014, 264 :30-34
[39]   Lithium-Sulfur Cells: The Gap between the State-of-the-Art and the Requirements for High Energy Battery Cells [J].
Hagen, Markus ;
Hanselmann, Dominik ;
Ahlbrecht, Katharina ;
Maca, Rudi ;
Gerber, Daniel ;
Tuebke, Jens .
ADVANCED ENERGY MATERIALS, 2015, 5 (16)
[40]   3D CoSe@C Aerogel as a Host for Dendrite-Free Lithium-Metal Anode and Efficient Sulfur Cathode in Li-S Full Cells [J].
He, Jiarui ;
Manthiram, Arumugam .
ADVANCED ENERGY MATERIALS, 2020, 10 (41)