An improved bound for the strong chromatic number

被引:18
作者
Haxell, P. E. [1 ]
机构
[1] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
关键词
strong chromatic number; maximum degree; partition;
D O I
10.1002/jgt.20300
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let eta > 0 be given. Then there exists d(0) = d(0)(eta) such that the following holds. Let G be a finite graph with maximum degree at most d >= d(0) whose vertex set is partitioned into classes of size alpha d, where alpha >= 11/4 + eta. Then there exists a proper coloring of G with alpha d colors in which each class receives all alpha d colors. (C) 2008 Wiley Periodicals, Inc.
引用
收藏
页码:148 / 158
页数:11
相关论文
共 50 条
[41]   A new graph parameter and a construction of larger graph without increasing radio k-chromatic number [J].
Sarkar, Ushnish ;
Adhikari, Avishek .
JOURNAL OF COMBINATORIAL OPTIMIZATION, 2017, 33 (04) :1365-1377
[42]   Edge-face chromatic number of 2-connected plane graphs with high maximum degree [J].
Zhang Zhongfu ;
Wang Weifan ;
Li Jingwen ;
Yao Bing ;
Bu Yuehua .
ACTA MATHEMATICA SCIENTIA, 2006, 26 (03) :477-482
[43]   EDGE-FACE CHROMATIC NUMBER OF 2-CONNECTED PLANE GRAPHS WITH HIGH MAXIMUM DEGREE [J].
张忠辅 ;
王维凡 ;
李敬文 ;
姚兵 ;
卜月华 .
ActaMathematicaScientia, 2006, (03) :477-482
[44]   A new graph parameter and a construction of larger graph without increasing radio k-chromatic number [J].
Ushnish Sarkar ;
Avishek Adhikari .
Journal of Combinatorial Optimization, 2017, 33 :1365-1377
[45]   The 2-Distance Chromatic Number of Planar Graphs Without 3,4,8-Cycles [J].
Bu, Yuehua ;
Zhang, Zewei ;
Zhu, Junlei ;
Zhu, Hongguo .
BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2024, 50 (06)
[46]   A tight upper bound on the (2, 1)-total labeling number of outerplanar graphs [J].
Hasunuma, Toru ;
Ishii, Toshimasa ;
Ono, Hirotaka ;
Uno, Yushi .
JOURNAL OF DISCRETE ALGORITHMS, 2012, 14 :189-206
[47]   An improved upper bound on the linear 2-arboricity of planar graphs [J].
Wang, Yiqiao .
DISCRETE MATHEMATICS, 2016, 339 (01) :39-45
[48]   AN IMPROVED UPPER BOUND ON THE LINEAR 2-ARBORICITY OF TOROIDAL GRAPHS [J].
Hu, Xiaoxue ;
Liu, Juan ;
Wang, Yiqiao .
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2022, 12 (04) :1672-1678
[49]   An Improved Upper Bound on the Linear 2-arboricity of 1-planar Graphs [J].
Juan Liu ;
Yi Qiao Wang ;
Ping Wang ;
Lu Zhang ;
Wei Fan Wang .
Acta Mathematica Sinica, English Series, 2021, 37 :262-278
[50]   An Improved Upper Bound on the Linear 2-arboricity of 1-planar Graphs [J].
Liu, Juan ;
Wang, Yi Qiao ;
Wang, Ping ;
Zhang, Lu ;
Wang, Wei Fan .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2021, 37 (02) :262-278