An improved bound for the strong chromatic number

被引:16
作者
Haxell, P. E. [1 ]
机构
[1] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
关键词
strong chromatic number; maximum degree; partition;
D O I
10.1002/jgt.20300
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let eta > 0 be given. Then there exists d(0) = d(0)(eta) such that the following holds. Let G be a finite graph with maximum degree at most d >= d(0) whose vertex set is partitioned into classes of size alpha d, where alpha >= 11/4 + eta. Then there exists a proper coloring of G with alpha d colors in which each class receives all alpha d colors. (C) 2008 Wiley Periodicals, Inc.
引用
收藏
页码:148 / 158
页数:11
相关论文
共 50 条
[21]   Ring graphs and Goldberg's bound on chromatic index [J].
Cao, Yan ;
Chen, Guantao ;
He, Shushan ;
Jing, Guangming .
JOURNAL OF GRAPH THEORY, 2020, 93 (03) :440-449
[22]   A note on the adjacent vertex distinguishing total chromatic number of graphs [J].
Huang, Danjun ;
Wang, Weifan ;
Yan, Chengchao .
DISCRETE MATHEMATICS, 2012, 312 (24) :3544-3546
[23]   On bounding the difference between the maximum degree and the chromatic number by a constant [J].
Weil, Vera ;
Schaudt, Oliver .
DISCRETE APPLIED MATHEMATICS, 2017, 231 :228-234
[24]   The fractional chromatic number of triangle-free graphs with Δ ≤ 3 [J].
Lu, Linyuan ;
Peng, Xing .
DISCRETE MATHEMATICS, 2012, 312 (24) :3502-3516
[25]   Two smaller upper bounds of list injective chromatic number [J].
Yuehua Bu ;
Kai Lu ;
Sheng Yang .
Journal of Combinatorial Optimization, 2015, 29 :373-388
[26]   Total chromatic number of planar graphs with maximum degree ten [J].
Wang, Weifan .
JOURNAL OF GRAPH THEORY, 2007, 54 (02) :91-102
[27]   Two smaller upper bounds of list injective chromatic number [J].
Bu, Yuehua ;
Lu, Kai ;
Yang, Sheng .
JOURNAL OF COMBINATORIAL OPTIMIZATION, 2015, 29 (02) :373-388
[28]   THE FRACTIONAL CHROMATIC NUMBER OF K\bfDelta-FREE GRAPHS [J].
Hu, Xiaolan ;
Peng, Xing .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2023, 37 (04) :2486-2507
[29]   Vertex-connectivity, chromatic number, domination number, maximum degree and Laplacian eigenvalue distribution [J].
Wang, Long ;
Yan, Chunyu ;
Fang, Xianwen ;
Geng, Xianya ;
Tian, Fenglei .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 607 :307-318
[30]   Sharp Bounds and Precise Values for the Ni-Chromatic Number of Graphs [J].
Yu, Yangfan ;
Sun, Yuefang .
JOURNAL OF INTERCONNECTION NETWORKS, 2024, 24 (04)