CeO2-CuO/Cu2O/Cu monolithic catalysts with three-kind morphologies Cu2O layers for preferential CO oxidation

被引:24
|
作者
Jing, Guojuan [1 ]
Zhang, Xuejiao [1 ]
Zhang, Aiai [1 ]
Li, Meng [2 ]
Zeng, Shanghong [1 ]
Xu, Changjin [1 ]
Su, Haiquan [1 ]
机构
[1] Inner Mongolia Univ, Sch Chem & Chem Engn, Inner Mongolia Key Lab Chem & Phys Rare Earth Mat, Hohhot 010021, Peoples R China
[2] Power Res Inst, Hohhot 010020, Inner Mongolia, Peoples R China
基金
中国国家自然科学基金;
关键词
Monolithic catalyst; Copper slices; Cu2O layer; Preferential CO oxidation; INVERSE CEO2/CUO CATALYSTS; H-2-RICH STREAM; PERFORMANCE; PROX; CUO/CEO2; TEMPERATURE; CUO; CORDIERITE; METHANOL; SUPPORT;
D O I
10.1016/j.apsusc.2017.10.212
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The supports of copper slices with three-kind morphologies Cu2O layers were prepared by the hydrothermal method. The Cu2O layers are rod-like structure, three-dimensional reticular and porous morphology as well as flower-like morphology, respectively. The CeO2-CuO/Cu2O/Cu monolithic catalysts present porous and network structure or foam morphology after loading CeO2 and CuO. Cu and Ce elements are uniformly dispersed onto the support surface. It is found that the monolithic catalyst with flower-like Cu2O layer displays better low-temperature activity because of highly-dispersed CuO and high O-latt concentration. The monolithic catalysts with rod-like or reticular-morphology Cu2O layers present high-temperature activity due to larger CuO crystallite sizes and good synergistic effect at copper-ceria interfacial sites. The as-prepared CeO2-CuO/Cu2O/Cu monolithic catalysts show good performance in the CO-PROX reaction. The generation of Cu2O layers with three-kind morphologies is beneficial to the loading and dispersion of copper oxides and ceria. (c) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:445 / 451
页数:7
相关论文
共 50 条
  • [21] Photochemical Synthesis of Cu2O and Cu2O/Ag Nanoparticles in Polyols
    Isaeva, E. I.
    Gorbunova, V. V.
    Pronin, V. P.
    Dolgintsev, D. M.
    RUSSIAN JOURNAL OF GENERAL CHEMISTRY, 2019, 89 (01) : 106 - 110
  • [22] Photochemical Synthesis of Cu2O and Cu2O/Ag Nanoparticles in Polyols
    E. I. Isaeva
    V. V. Gorbunova
    V. P. Pronin
    D. M. Dolgintsev
    Russian Journal of General Chemistry, 2019, 89 : 106 - 110
  • [23] Oxidation Mechanism of Cu2O to CuO at 600–1050°C
    Y. Zhu
    K. Mimura
    M. Isshiki
    Oxidation of Metals, 2004, 62 : 207 - 222
  • [24] Transforming Single-Crystal CuO/Cu2O Nanorods into Nano-Polycrystalline Cu/Cu2O through Lithiation
    Hu, Pu
    Dorogov, Maxim
    Xin, Yan
    Aifantis, Katerina E.
    CHEMELECTROCHEM, 2019, 6 (12) : 3139 - 3144
  • [25] CO oxidation by Cu2O supported Pt atoms
    Therrien, Andrew
    Sykes, E. Charles
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 250
  • [26] ELECTRONIC-STRUCTURE OF CU2O AND CUO
    GHIJSEN, J
    TJENG, LH
    VANELP, J
    ESKES, H
    WESTERINK, J
    SAWATZKY, GA
    CZYZYK, MT
    PHYSICAL REVIEW B, 1988, 38 (16): : 11322 - 11330
  • [27] Fabrication of superhydrophilic Cu2O and CuO membranes
    Tang, Kangjian
    Wang, Xiaofang
    Yan, Wenfu
    Yu, Jihong
    Xu, Ruren
    JOURNAL OF MEMBRANE SCIENCE, 2006, 286 (1-2) : 279 - 284
  • [28] Photocatalytic activity of CuO and Cu2O nanowires
    Scuderi, V.
    Amiard, G.
    Boninelli, S.
    Scalese, S.
    Miritello, M.
    Sberna, P. M.
    Impellizzeri, G.
    Privitera, V.
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2016, 42 : 89 - 93
  • [29] Which is easier to reduce, Cu2O or CuO?
    Nakayama, Shigeyoshi
    Kaji, Tokiko
    Shibata, Masahiro
    Notoya, Takenori
    Osakai, Toshiyuki
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2007, 154 (01) : C1 - C6
  • [30] 是Cu2O?还是Cu?
    贺希格太平
    内蒙古教育, 1995, (07) : 41 - 41