Almost periodic solutions for an impulsive delay model of price fluctuations in commodity markets

被引:33
作者
Stamov, G. Tr [2 ]
Alzabut, J. O. [1 ]
Atanasov, P. [3 ]
Stamov, A. G. [4 ]
机构
[1] Prince Sultan Univ, Dept Math & Phys Sci, Riyadh 11586, Saudi Arabia
[2] Tech Univ Sofia, Dept Math, Sliven 8800, Bulgaria
[3] Univ Limoges, Res Ctr Co Org & Inheritance, F-87031 Limoges, France
[4] Univ Amsterdam, Fac Econ & Business, NL-1018 WB Amsterdam, Netherlands
关键词
Almost periodic solution; Lyapunov's functions; Razumikhin techniques; Price fluctuations in single-commodity markets; DIFFERENTIAL-EQUATIONS; EXISTENCE; STABILITY;
D O I
10.1016/j.nonrwa.2011.05.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, we shall consider the following impulsive delay system for modeling the price fluctuations in single-commodity markets: {(p) over dot (t) = F (p(t), p(t - h))p(t), t not equal tau(k), p(t) = phi(0)(t), t is an element of [t(0) - h, t(0)], Delta p(t) = I-k(p(t)), t = tau(k), k is an element of Z. Sufficient conditions are established for the existence of almost periodic solutions for this system. Piecewise continuous functions of the Lyapunov type as well as the Razumikhin technique have been utilized to prove our main results. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3170 / 3176
页数:7
相关论文
共 48 条
[1]   On almost periodic processes in impulsive competitive systems with delay and impulsive perturbations [J].
Ahmad, Shair ;
Stamov, Gani Tr .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (05) :2857-2863
[2]   Almost periodic solutions of N-dimensional impulsive competitive systems [J].
Ahmad, Shair ;
Stamov, Gani Tr. .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (03) :1846-1853
[3]   On almost periodic solutions for an impulsive delay logarithmic population model [J].
Alzabut, J. O. ;
Stamov, G. Tr. ;
Sermutlu, E. .
MATHEMATICAL AND COMPUTER MODELLING, 2010, 51 (5-6) :625-631
[4]   Existence and Exponential Stability of Positive Almost Periodic Solutions for a Model of Hematopoiesis [J].
Alzabut, J. O. ;
Nieto, J. J. ;
Stamov, G. Tr. .
BOUNDARY VALUE PROBLEMS, 2009,
[5]   Existence of Periodic Solutions of a Type of Nonlinear Impulsive Delay Differential Equations with a Small Parameter [J].
Alzabut, Jehad O. .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2008, 15 (Suppl 3) :13-21
[6]  
[Anonymous], 1983, Regular and Stochastic Motion
[7]  
[Anonymous], 1993, STUD U BABES BOLYAI
[8]  
[Anonymous], 1995, DIFFERENTIAL EQUATIO
[9]   Lipschitz stability of impulsive functional-differential equations [J].
Bainov, DD ;
Stamova, IM .
ANZIAM JOURNAL, 2001, 42 :504-514
[10]  
BAINOV DD, 1999, PANAMERICAN MATH J, V9, P87