Critical parameter equations for degenerate parabolic equations coupled via nonlinear boundary flux

被引:0
作者
Xu, Si [1 ]
Song, Zifen [1 ]
机构
[1] Jiangxi Vocat Coll Finance & Econ, Dept Math, Jiujiang 332000, Jiangxi, Peoples R China
关键词
degenerate parabolic system; global existence; blow-up; POROUS-MEDIA EQUATION; BLOW-UP; HEAT-EQUATIONS; SIMILARITY SOLUTIONS; CRITICAL EXPONENTS; GLOBAL EXISTENCE; DIFFUSION SYSTEM; THEOREMS;
D O I
10.1186/1687-2770-2011-15
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the critical parameter equations for a degenerate parabolic system coupled via nonlinear boundary flux. By constructing the self-similar supersolution and subsolution, we obtain the critical global existence parameter equation. The critical Fujita type is conjectured with the aid of some new results. Mathematics Subject Classification (2000). 35K55; 35K57.
引用
收藏
页数:13
相关论文
共 20 条
[1]   Liouville theorems and blow up behaviour in semilinear reaction diffusion systems [J].
Andreucci, D ;
Herrero, MA ;
Velazquez, JJL .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1997, 14 (01) :1-53
[2]  
BENILAN P, 1991, REV UNION MAT ARGENT, V37, P10
[3]  
CORTAZAR C, 1991, EUR J APPL MATH, V2, P159
[4]   CRITICAL BLOWUP AND GLOBAL EXISTENCE NUMBERS FOR A WEAKLY COUPLED SYSTEM OF REACTION-DIFFUSION EQUATIONS [J].
ESCOBEDO, M ;
LEVINE, HA .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1995, 129 (01) :47-100
[5]  
Fujita H., 1966, J. Fac. Sci. Univ. Tokyo Sec. 1A Math, V16, P105
[6]  
Galaktionov V. A., 1980, Soviet Physics - Doklady, V25, P458
[7]   BLOW-UP FOR QUASI-LINEAR HEAT-EQUATIONS WITH CRITICAL FUJITAS EXPONENTS [J].
GALAKTIONOV, VA .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1994, 124 :517-525
[8]  
GALAKTIONOV VA, 1996, ISR J MATH, V94, P1250
[10]   CLASS OF SIMILARITY SOLUTIONS OF POROUS-MEDIA EQUATION [J].
GILDING, BH ;
PELETIER, LA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1976, 55 (02) :351-364