SYMMETRY OF POSITIVE SOLUTIONS FOR EQUATIONS INVOLVING HIGHER ORDER FRACTIONAL LAPLACIAN

被引:7
作者
Li, Yan [1 ]
Zhuo, Ran [1 ,2 ]
机构
[1] Yeshiva Univ, Dept Math Sci, New York, NY 10033 USA
[2] Huanghuai Univ, Dept Math Sci, Zhumadian 463000, Henan, Peoples R China
关键词
Higher order fractional Laplacian; fractional Laplacian; the method of moving planes; rotational symmetry; equivalence; LIOUVILLE TYPE THEOREMS; OBSTACLE PROBLEM; REGULARITY; SYSTEM; CLASSIFICATION; DIFFUSION; BOUNDARY;
D O I
10.1090/proc/13052
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider problems associated with the higher order fractional Laplacian. Through the method of moving planes, we derive rotational symmetry of positive solutions and show their dependence on the x(n) variable only. We also establish the equivalence between a semilinear higher order fractional Laplacian equation and its corresponding integral equation, so as to further deduce a Liouville type theorem and obtain a priori estimates for positive solutions.
引用
收藏
页码:4303 / 4318
页数:16
相关论文
共 49 条
[1]  
Alexandrov A.D., 1962, Ann. Mat. Pura Appl., V58, P303, DOI [10.1007/BF02413056, DOI 10.1007/BF02413056]
[2]  
Applebaum David, 2009, CAMBRIDGE STUDIES AD, V116
[3]  
Axler S., 2001, GRAD TEXT M, V137
[4]  
Berestycki H., 1991, Bol. Soc. Bras. Mat, V22, P1, DOI [DOI 10.1007/BF01244896, 10.1007/BF01244896]
[5]  
Bertoin Jean, 1996, CAMBRIDGE TRACTS MAT, V121
[6]   Comparison results and steady states for the Fujita equation with fractional Laplacian [J].
Birkner, M ;
López-Mimbela, JA ;
Wakolbinger, A .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2005, 22 (01) :83-97
[7]  
Bogdan K, 2002, ILLINOIS J MATH, V46, P541
[8]   HEAT KERNEL ESTIMATES FOR THE FRACTIONAL LAPLACIAN WITH DIRICHLET CONDITIONS [J].
Bogdan, Krzysztof ;
Grzywny, Tomasz ;
Ryznar, Michal .
ANNALS OF PROBABILITY, 2010, 38 (05) :1901-1923
[9]   ANOMALOUS DIFFUSION IN DISORDERED MEDIA - STATISTICAL MECHANISMS, MODELS AND PHYSICAL APPLICATIONS [J].
BOUCHAUD, JP ;
GEORGES, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 195 (4-5) :127-293
[10]   Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates [J].
Cabre, Xavier ;
Sire, Yannick .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2014, 31 (01) :23-53