Anisotropic Rod-Shaped Particles Influence Injectable Granular Hydrogel Properties and Cell Invasion

被引:128
作者
Qazi, Taimoor H. [1 ]
Wu, Jingyu [2 ]
Muir, Victoria G. [1 ]
Weintraub, Shoshana [1 ]
Gullbrand, Sarah E. [3 ,4 ]
Lee, Daeyeon [2 ]
Issadore, David [1 ,5 ]
Burdick, Jason A. [1 ]
机构
[1] Univ Penn, Sch Engn & Appl Sci, Dept Bioengn, Philadelphia, PA 19104 USA
[2] Univ Penn, Dept Chem & Biomol Engn, Philadelphia, PA 19104 USA
[3] Corporal Michael J Crescenz VA Med Ctr, Translat Musculoskeletal Res Ctr, Philadelphia, PA 19104 USA
[4] Univ Penn, McKay Orthopaed Res Lab, Dept Orthopaed Surg, Philadelphia, PA 19104 USA
[5] Univ Penn, Dept Elect & Syst Engn, Philadelphia, PA 19104 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
angiogenesis; biomaterials; elongated particles; endogenous repair; jamming; microgels; MICROGELS;
D O I
10.1002/adma.202109194
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Granular hydrogels have emerged as a new class of injectable and porous biomaterials that improve integration with host tissue when compared to solid hydrogels. Granular hydrogels are typically prepared using spherical particles and this study considers whether particle shape (i.e., isotropic spheres vs anisotropic rods) influences granular hydrogel properties and cellular invasion. Simulations predict that anisotropic rods influence pore shape and interconnectivity, as well as bead transport through granular assemblies. Photo-cross-linkable norbornene-modified hyaluronic acid is used to produce spherical and rod-shaped particles using microfluidic droplet generators and formed into shear-thinning and self-healing granular hydrogels, with particle shape influencing mechanics and injectability. Rod-shaped particles form granular hydrogels that have anisotropic and interconnected pores, with pore size and number influenced by particle shape and degree of packing. Robust in vitro sprouting of endothelial cells from embedded cellular spheroids is observed with rod-shaped particles, including higher sprouting densities and sprout lengths when compared to hydrogels with spherical particles. Cell and vessel invasion into granular hydrogels when injected subcutaneously in vivo are significantly greater with rod-shaped particles, whereas a gradient of cellularity is observed with spherical particles. Overall, this work demonstrates potentially superior functional properties of granular hydrogels with rod-shaped particles for tissue repair.
引用
收藏
页数:12
相关论文
共 39 条
[31]   3D Printing of Microgel-Loaded Modular Microcages as Instructive Scaffolds for Tissue Engineering [J].
Subbiah, Ramesh ;
Hipfinger, Christina ;
Tahayeri, Anthony ;
Athirasala, Avathamsa ;
Horsophonphong, Sivaporn ;
Thrivikraman, Greeshma ;
Franca, Cristiane Miranda ;
Cunha, Diana Araujo ;
Mansoorifar, Amin ;
Zahariev, Albena ;
Jones, James M. ;
Coelho, Paulo G. ;
Witek, Lukasz ;
Xie, Hua ;
Guldberg, Robert E. ;
Bertassoni, Luiz E. .
ADVANCED MATERIALS, 2020, 32 (36)
[32]   3D Cell-Migration Studies using Two-Photon Engineered Polymer Scaffolds [J].
Tayalia, Prakriti ;
Mendonca, Cleber R. ;
Baldacchini, Tommaso ;
Mooney, David J. ;
Mazur, Eric .
ADVANCED MATERIALS, 2008, 20 (23) :4494-4498
[33]   Recent advances in shear-thinning and self-healing hydrogels for biomedical applications [J].
Uman, Selen ;
Dhand, Abhishek ;
Burdick, Jason A. .
JOURNAL OF APPLIED POLYMER SCIENCE, 2020, 137 (25)
[34]   Oxidized alginate beads for tunable release of osteogenically potent mesenchymal stromal cells [J].
Xiang, Gao ;
Lippens, Evi ;
Hafeez, Shahzad ;
Duda, Georg N. ;
Geissler, Sven ;
Qazi, Taimoor H. .
MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2019, 104
[35]   Creating Physicochemical Gradients in Modular Microporous Annealed Particle Hydrogels via a Microfluidic Method [J].
Xin, Shangjing ;
Dai, Jing ;
Gregory, Carl A. ;
Han, Arum ;
Alge, Daniel L. .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (06)
[36]   Interplay between degradability and integrin signaling on mesenchymal stem cell function within poly(ethylene glycol) based microporous annealed particle hydrogels [J].
Xin, Shangjing ;
Gregory, Carl A. ;
Alge, Daniel L. .
ACTA BIOMATERIALIA, 2020, 101 :227-236
[37]   Clickable PEG hydrogel microspheres as building blocks for 3D bioprinting [J].
Xin, Shangjing ;
Chimene, David ;
Garza, Jay E. ;
Gaharwar, Akhilesh K. ;
Alge, Daniel L. .
BIOMATERIALS SCIENCE, 2019, 7 (03) :1179-1187
[38]   Generation of monodisperse particles by using microfluidics: Control over size, shape, and composition [J].
Xu, SQ ;
Nie, ZH ;
Seo, M ;
Lewis, P ;
Kumacheva, E ;
Stone, HA ;
Garstecki, P ;
Weibel, DB ;
Gitlin, I ;
Whitesides, GM .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2005, 44 (05) :724-728
[39]   Silicon and glass very large scale microfluidic droplet integration for terascale generation of polymer microparticles [J].
Yadavali, Sagar ;
Jeong, Heon-Ho ;
Lee, Daeyeon ;
Issadore, David .
NATURE COMMUNICATIONS, 2018, 9