A note on linear Kripke models

被引:4
作者
Iemhoff, R [1 ]
机构
[1] Vienna Tech Univ, Inst Discrete Math & Geometry E104, A-1040 Vienna, Austria
关键词
Kripke models; Godel logics; Scott logics; linear frames; cones; existence predicate; truth value sets;
D O I
10.1093/logcom/exi031
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Godel logics correspond to linear models with constant domains. In this paper other truth value logics, Scott logics, are defined, that correspond to linear models with possibly non-constant domains. An extension of intuitionistic logic with an existence predicate is discussed, and it is shown that this provides a natural translation of Scott logics into Godel logics extended by this predicate.
引用
收藏
页码:489 / 506
页数:18
相关论文
共 11 条
  • [1] BAAZ M, 2005, IN PRESS STUDIA LOGI
  • [2] BAAZ M, 2005, UNPUB SKOLEMIZATION
  • [3] BECKMANN A, 2005, UNPUB LINEAR KRIPKE
  • [4] A CUT-FREE CALCULUS FOR DUMMETTS LC QUANTIFIED
    CORSI, G
    [J]. ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, 1989, 35 (04): : 289 - 301
  • [5] Corsi G., 1989, STUD LOGICA, V48, P15
  • [6] Corsi G., 1992, STUD LOGICA, V51, P317
  • [7] MINTS GE, 2000, CSLI LECT NOTES, V91
  • [8] PREINING N, 2003, THESIS TU VIENNA
  • [9] Scott D., 1979, Lecture Notes in Mathematics, P660, DOI [DOI 10.1007/BFB0061839, 10.1007/BFb0061839]
  • [10] TAKANO M, 1987, TSUKUBA J MATH, V11, P101