CO2 capture and storage from a bioethanol plant: Carbon and energy footprint and economic assessment

被引:75
|
作者
Laude, A. [1 ]
Ricci, O. [1 ]
Bureau, G. [2 ]
Royer-Adnot, J. [2 ]
Fabbri, A. [3 ]
机构
[1] Univ Orleans, CNRS, LEO, UMR 6221, F-45067 Orleans 2, France
[2] Geogreen, F-92563 Rueil Malmaison, France
[3] Bur Rech Geol & Minieres, F-45060 Orleans 2, France
关键词
Carbon capture and storage; Biomass energy; Ethanol production; Sugar beet; Carbon and energy footprint; Economic evaluation; LIFE-CYCLE ASSESSMENT; BIO-ENERGY; BIOMASS; FEASIBILITY; THREAT; SYSTEM;
D O I
10.1016/j.ijggc.2011.06.004
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Biomass energy and carbon capture and storage (BECCS) can lead to a net removal of atmospheric CO2. This paper investigates environmental and economic performances of CCS retrofit applied to two mid-sized refineries producing ethanol from sugar beets. Located in the Region Centre France, each refinery has two major CO2 sources: fermentation and cogeneration units. "carbon and energy footprint" (CEF) and "discounted cash flow" (DCF) analyses show that such a project could be a good opportunity for CCS early deployment. CCS retrofit on fermentation only with natural gas fired cogeneration improves CEF of ethanol production and consumption by 60% without increasing much the non renewable energy consumption. CCS retrofit on fermentation and natural gas fired cogeneration is even more appealing by decreasing of 115% CO2 emissions, while increasing non renewable energy consumption by 40%. DCF shows that significant project rates of return can be achieved for such small sources if both a stringent carbon policy and direct subsidies corresponding to 25% of necessary investment are assumed. We also underlined that transport and storage cost dilution can be realistically achieved by clustering emissions from various plants located in the same area. On a single plant basis, increasing ethanol production can also produce strong economies of scale. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1220 / 1231
页数:12
相关论文
共 50 条
  • [21] Techno-economic analysis of polygeneration systems with carbon capture and storage and CO2 reuse
    Ng, Kok Siew
    Zhang, Nan
    Sadhukhan, Jhuma
    CHEMICAL ENGINEERING JOURNAL, 2013, 219 : 96 - 108
  • [22] An engineering-economic model of pipeline transport of CO2 with application to carbon capture and storage
    McCoy, Sean T.
    Rubin, Edward S.
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2008, 2 (02) : 219 - 229
  • [23] Comparison of CO2 abatement by use of renewable energy and CO2 capture and storage
    Davison, J
    GREENHOUSE GAS CONTROL TECHNOLOGIES, 2001, : 851 - 856
  • [24] A techno-economic case study of CO2 capture, transport and storage chain from a cement plant in Norway
    Jakobsen, Jana
    Roussanaly, Simon
    Anantharaman, Rahul
    JOURNAL OF CLEANER PRODUCTION, 2017, 144 : 523 - 539
  • [25] An initial assessment of the potential environmental impact of CO2 escape from marine carbon capture and storage systems
    Blackford, J.
    Jones, N.
    Proctor, R.
    Holt, J.
    Widdicombe, S.
    Lowe, D.
    Rees, A.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART A-JOURNAL OF POWER AND ENERGY, 2009, 223 (A3) : 269 - 280
  • [26] Economic assessment for the CO2 capture technologies applied in the coal-firing power plant
    Liu, Yanfeng
    Zhu, Luping
    Yan, Weiping
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2010, 30 (SUPPL.): : 59 - 64
  • [27] CO2 hydrate slurry transportation in carbon capture and storage
    Prah, Benedict
    Yun, Rin
    APPLIED THERMAL ENGINEERING, 2018, 128 : 653 - 661
  • [28] Transportation systems for CO2 -: application to carbon capture and storage
    Svensson, R
    Odenberger, M
    Johnsson, F
    Strömberg, L
    ENERGY CONVERSION AND MANAGEMENT, 2004, 45 (15-16) : 2343 - 2353
  • [29] Assessment of CO2 capture and storage onboard LNG vessels driven by energy recovery from engine exhaust
    Ballout, Jaafar
    Al-Rawashdeh, Ma'moun
    Al-Mohannadi, Dhabia
    Rousseau, Joseph
    Burton, Gareth
    Linke, Patrick
    CLEANER ENGINEERING AND TECHNOLOGY, 2024, 22
  • [30] CO2 SOLUTIONS: INNOVATIONS IN CARBON CAPTURE, UTILIZATION AND STORAGE
    Mihaila , Eliza-Gabriela
    Dobre, Tanase
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN SERIES B-CHEMISTRY AND MATERIALS SCIENCE, 2025, 87 (01): : 35 - 46