Estimation of Multivariate Dependence Structures via Constrained Maximum Likelihood

被引:1
|
作者
Adegoke, Nurudeen A. [1 ,2 ]
Punnett, Andrew [1 ]
Anderson, Marti J. [1 ,2 ]
机构
[1] Primer E Quest Res Ltd, Auckland, New Zealand
[2] Massey Univ, New Zealand Inst Adv Study NZIAS, Auckland, New Zealand
关键词
Constrained optimization; Gaussian copula; Graphical model; Regularization; Sparse modelling; Statistical model; COORDINATE DESCENT ALGORITHMS; COVARIANCE ESTIMATION; ADAPTIVE LASSO; REGRESSION; ABUNDANCE; SELECTION; COPULA;
D O I
10.1007/s13253-021-00475-x
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Estimating high-dimensional dependence structures in models of multivariate datasets is an ongoing challenge. Copulas provide a powerful and intuitive way to model dependence structure in the joint distribution of disparate types of variables. Here, we propose an estimation method for Gaussian copula parameters based on the maximum likelihood estimate of a covariance matrix that includes shrinkage and where all of the diagonal elements are restricted to be equal to 1. We show that this estimation problem can be solved using a numerical solution that optimizes the problem in a block coordinate descent fashion. We illustrate the advantage of our proposed scheme in providing an efficient estimate of sparse Gaussian copula covariance parameters using a simulation study. The sparse estimate was obtained by regularizing the constrained problem using either the least absolute shrinkage and selection operator (LASSO) or the adaptive LASSO penalty, applied to either the covariance matrix or the inverse covariance (precision) matrix. Simulation results indicate that our method outperforms conventional estimates of sparse Gaussian copula covariance parameters. We demonstrate the proposed method for modelling dependence structures through an analysis of multivariate groundfish abundance data obtained from annual bottom trawl surveys in the northeast Pacific from 2014 to 2018. Supplementary materials accompanying this paper appear on-line.
引用
收藏
页码:240 / 260
页数:21
相关论文
共 50 条
  • [1] Estimation of Multivariate Dependence Structures via Constrained Maximum Likelihood
    Nurudeen A. Adegoke
    Andrew Punnett
    Marti J. Anderson
    Journal of Agricultural, Biological and Environmental Statistics, 2022, 27 : 240 - 260
  • [2] Maximum likelihood estimation based regression for multivariate calibration
    Guo, Lu
    Peng, Jiangtao
    Xie, Qiwei
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2018, 189 : 316 - 321
  • [3] Efficient estimation of approximate factor models via penalized maximum likelihood
    Bai, Jushan
    Liao, Yuan
    JOURNAL OF ECONOMETRICS, 2016, 191 (01) : 1 - 18
  • [4] Perspective maximum likelihood-type estimation via proximal decomposition
    Combettes, Patrick L.
    Mueller, Christian L.
    ELECTRONIC JOURNAL OF STATISTICS, 2020, 14 (01): : 207 - 238
  • [5] Monitoring multivariate process variability with individual observations via penalised likelihood estimation
    Yeh, Arthur B.
    Li, Bo
    Wang, Kaibo
    INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2012, 50 (22) : 6624 - 6638
  • [6] Maximum Likelihood Estimation of Tobit Factor Analysis for Multivariate t-Distribution
    Zhou, Xingcai
    Tan, Changchun
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2010, 39 (01) : 1 - 16
  • [7] Sparse factor regression via penalized maximum likelihood estimation
    Hirose, Kei
    Imada, Miyuki
    STATISTICAL PAPERS, 2018, 59 (02) : 633 - 662
  • [8] ESTIMATION OF COVARIANCE PARAMETERS IN KRIGING VIA RESTRICTED MAXIMUM-LIKELIHOOD
    DIETRICH, CR
    OSBORNE, MR
    MATHEMATICAL GEOLOGY, 1991, 23 (01): : 119 - 135
  • [9] MAXIMUM-LIKELIHOOD-ESTIMATION VIA THE ECM ALGORITHM - A GENERAL FRAMEWORK
    MENG, XL
    RUBIN, DB
    BIOMETRIKA, 1993, 80 (02) : 267 - 278
  • [10] RENORMALIZED MAXIMUM LIKELIHOOD FOR MULTIVARIATE AUTOREGRESSIVE MODELS
    Maanan, Said
    Dumitrescu, Bogdan
    Giurcaneanu, Ciprian Doru
    2016 24TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2016, : 150 - 154