The Conformational Change in Elongation Factor Tu Involves Separation of Its Domains

被引:12
作者
Lai, Jonathan [1 ]
Ghaemi, Zhaleh [1 ]
Luthey-Schulten, Zaida [1 ,2 ,3 ,4 ]
机构
[1] Univ Illinois, Dept Chem, Urbana, IL 61801 USA
[2] Univ Illinois, Ctr Phys Living Cells, Urbana, IL 61801 USA
[3] Univ Illinois, Beckman Inst, Urbana, IL 61801 USA
[4] Univ Illinois, Carl Woese Inst Genom Biol, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
AMINOACYL-TRANSFER-RNA; MOLECULAR-DYNAMICS; GTP HYDROLYSIS; EF-TU; FORCE-FIELD; TRANSLATIONAL GTPASES; KINETIC MECHANISM; CRYSTAL-STRUCTURE; TERNARY COMPLEX; RIBOSOME;
D O I
10.1021/acs.biochem.7b00591
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Elongation factor Tu (EF-Tu) is a highly conserved GTPase that is responsible for supplying the aminoacylated tRNA to the ribosome. Upon binding to the ribosome, EF-Tu undergoes GTP hydrolysis, which drives a major conformational change, triggering the release of aminoacylated tRNA to the ribosome. Using a combination of molecular simulation techniques, we studied the transition between the pre- and post-hydrolysis structures through two distinct pathways. We show that the transition free energy is minimal along a non-intuitive pathway that involves "separation" of the GTP binding domain (domain 1) from the OB folds (domains 2 and 3), followed by domain 1 rotation, and, eventually, locking the EF-Tu conformation in the post-hydrolysis state. The domain separation also leads to a slight extension of the linker connecting domain 1 to domain 2. Using docking tools and correlation-based analysis, we identified and characterized the EF-Tu conformations that release the tRNA. These calculations suggest that EF-Tu can release the tRNA before the domains separate and after domain 1 rotates by 25 degrees. We also examined the EF-Tu conformations in the context of the ribosome. Given the high degrees of sequence similarity with other translational GTPases, we predict a similar separation mechanism is followed.
引用
收藏
页码:5972 / 5979
页数:8
相关论文
共 63 条
[1]   Converting structural information into an allosteric-energy-based picture for elongation factor Tu activation by the ribosome [J].
Adamczyk, Andrew J. ;
Warshel, Arieh .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (24) :9827-9832
[2]   Structural insights into cognate versus near-cognate discrimination during decoding [J].
Agirrezabala, Xabier ;
Schreiner, Eduard ;
Trabuco, Leonardo G. ;
Lei, Jianlin ;
Ortiz-Meoz, Rodrigo F. ;
Schulten, Klaus ;
Green, Rachel ;
Frank, Joachim .
EMBO JOURNAL, 2011, 30 (08) :1497-1507
[3]   Mechanism of activation of elongation factor Tu by ribosome: Catalytic histidine activates GTP by protonation [J].
Aleksandrov, Alexey ;
Field, Martin .
RNA, 2013, 19 (09) :1218-1225
[4]   Experimental and computational determination of tRNA dynamics [J].
Alexander, Rebecca W. ;
Eargle, John ;
Luthey-Schulten, Zaida .
FEBS LETTERS, 2010, 584 (02) :376-386
[5]  
[Anonymous], 2008, ECOSAL PLUS
[6]   Exceptionally large entropy contributions enable the high rates of GTP hydrolysis on the ribosome [J].
Aqvist, Johan ;
Kamerlin, Shina C. L. .
SCIENTIFIC REPORTS, 2015, 5
[7]   The evolutionary and functional diversity of classical and lesser-known cytoplasmic and organellar translational GTPases across the tree of life [J].
Atkinson, Gemma Catherine .
BMC GENOMICS, 2015, 16
[8]  
Balaeff A., 2005, IONIZE VERSION 1 6
[9]   Well-tempered metadynamics: A smoothly converging and tunable free-energy method [J].
Barducci, Alessandro ;
Bussi, Giovanni ;
Parrinello, Michele .
PHYSICAL REVIEW LETTERS, 2008, 100 (02)
[10]   Structural Snapshots of Actively Translating Human Ribosomes [J].
Behrmann, Elmar ;
Loerke, Justus ;
Budkevich, Tatyana V. ;
Yamamoto, Kaori ;
Schmidt, Andrea ;
Penczek, Pawel A. ;
Vos, Matthijn R. ;
Buerger, Joerg ;
Mielke, Thorsten ;
Scheerer, Patrick ;
Spahn, Christian M. T. .
CELL, 2015, 161 (04) :845-857