Full state hybrid projective synchronization of a general class of chaotic maps

被引:29
作者
Hu, Manfeng [1 ,2 ]
Xu, Zhenyuan [1 ]
Zhang, Rong [1 ,2 ]
机构
[1] So Yangtze Univ, Sch Sci, Wuxi 214122, Peoples R China
[2] So Yangtze Univ, Sch Informat Technol, Wuxi 214122, Peoples R China
基金
中国国家自然科学基金;
关键词
FSHPS; 3D generalized Henon map; 3D discrete-time Grassi-Miller map; active control;
D O I
10.1016/j.cnsns.2006.07.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A systematic and concrete scheme is proposed to study the full state hybrid projective synchronization (FSHPS) of a general class of chaotic maps based on the active control idea. The scheme is accessible to the FSHPS of two identical or different chaotic maps. The 3D generalized Henon map and 3D discrete-time Grassi-Miller map are chosen to illustrate the proposed scheme, and numerical simulations are given to show the effectiveness of the proposed chaos synchronization method. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:782 / 789
页数:8
相关论文
共 20 条
[1]   Synchronization of two Lorenz systems using active control [J].
Bai, EW ;
Lonngren, KE .
CHAOS SOLITONS & FRACTALS, 1997, 8 (01) :51-58
[2]   The synchronization of chaotic systems [J].
Boccaletti, S ;
Kurths, J ;
Osipov, G ;
Valladares, DL ;
Zhou, CS .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 366 (1-2) :1-101
[3]   Secure digital communication using controlled projective synchronisation of chaos [J].
Chee, CY ;
Xu, DL .
CHAOS SOLITONS & FRACTALS, 2005, 23 (03) :1063-1070
[4]   STABILITY THEORY OF SYNCHRONIZED MOTION IN COUPLED-OSCILLATOR SYSTEMS [J].
FUJISAKA, H ;
YAMADA, T .
PROGRESS OF THEORETICAL PHYSICS, 1983, 69 (01) :32-47
[5]   Theory and experimental realization of observer-based discrete-time hyperchaos synchronization [J].
Grassi, G ;
Miller, DA .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2002, 49 (03) :373-378
[6]   Adaptive control for anti-synchronization of Chua's chaotic system [J].
Hu, J ;
Chen, SH ;
Chen, L .
PHYSICS LETTERS A, 2005, 339 (06) :455-460
[7]  
HU MF, IN PRESS COMMUN NONL
[8]   Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems [J].
Kocarev, L ;
Parlitz, U .
PHYSICAL REVIEW LETTERS, 1996, 76 (11) :1816-1819
[9]   Projective synchronization in three-dimensional chaotic systems [J].
Mainieri, R ;
Rehacek, J .
PHYSICAL REVIEW LETTERS, 1999, 82 (15) :3042-3045
[10]   Phase synchronization in the forced Lorenz system [J].
Park, EH ;
Zaks, MA ;
Kurths, J .
PHYSICAL REVIEW E, 1999, 60 (06) :6627-6638