Alkynylisocyanide Gold Mesogens as Precursors of Gold Nanoparticles

被引:22
|
作者
Chico, Ruben [1 ]
Castillejos, Eva [2 ]
Serp, Philippe [2 ]
Coco, Silverio [1 ]
Espinet, Pablo [1 ]
机构
[1] Univ Valladolid, Fac Ciencias, IU CINQUIMA Quim Inorgan, Valladolid 47071, Castilla Y Leon, Spain
[2] Toulouse Univ, ENSIACET, Lab Chim Coordinat, CNRS,UPR 8241, Toulouse 4, France
关键词
OXIDATIVE COUPLING REACTIONS; ROOM-TEMPERATURE; LIQUID-CRYSTALS; SIZE CONTROL; METAL NANOPARTICLES; TERMINAL ALKYNES; CATALYSIS; COMPLEXES; DIISOCYANIDE; NANOCRYSTALS;
D O I
10.1021/ic201210p
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Gold nanoparticles (Au NPs) have been synthesized using simple thermolysis, whether from the mesophase or from toluene solutions, of mesogenic alkynyl-isocyanide gold complexes [Au(C C-C6H4-CmH2m+1) (C N-C6H4-O-CnH2n+1)]. The thermal decomposition from the mesophase is much slower than from solution and produces a more heterogeneous size distribution of the nanoparticles. Working in toluene solution, the size of nanoparticles can be modulated from similar to 2 to similar to 20 nm by tuning the chain lengths of the ligands present in the precursor. Different experimental conditions have been analyzed to reveal the processes governing the formation of the gold nanoparticles. Experiments on the effect of adding ligands or bubbling oxygen support that the thermal decomposition is a bimolecular process that starts by decoordination of the isocyanide ligand, producing an oxidative coupling of the akynyl group to [R-C C-C C-R] and reduction of gold(I) to gold(0) as nanoparticles. The nanopartides obtained behave as a catalyst in the oxidation of isocyanide (CNR) to isocyanate (OCNR), which in turn cooperates to catalyze the decomposition.
引用
收藏
页码:8654 / 8662
页数:9
相关论文
共 50 条
  • [31] Effect of the Cleaning Step on the Morphology of Gold Nanoparticles
    Napporn, Teko Wilhelmin
    Habrioux, Aurelien
    Rousseau, Julie
    Servat, Karine
    Leger, Jean-Michel
    Kokoh, Boniface K.
    ELECTROCATALYSIS, 2011, 2 (01) : 24 - 27
  • [32] Photothermal Correlation Spectroscopy of Gold Nanoparticles in Solution
    Paulo, Pedro M. R.
    Gaiduk, Alexander
    Kulzer, Florian
    Krens, S. F. Gabby
    Spaink, Herman P.
    Schmidt, Thomas
    Orrit, Michel
    JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (27) : 11451 - 11457
  • [33] Chemistry for oncotheranostic gold nanoparticles
    Trouiller, Anne Juliette
    Hebie, Seydou
    El Bahhaj, Fatima
    Napporn, Teko W.
    Bertrand, Philippe
    EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, 2015, 99 : 92 - 112
  • [34] Photothermal properties of gold nanoparticles
    Petrova, Hristina
    Hu, Min
    Hartland, Gregory V.
    ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-INTERNATIONAL JOURNAL OF RESEARCH IN PHYSICAL CHEMISTRY & CHEMICAL PHYSICS, 2007, 221 (03): : 361 - 376
  • [35] Shape evolution of gold nanoparticles
    Wang, Y. Q.
    Liang, W. S.
    Geng, C. Y.
    JOURNAL OF NANOPARTICLE RESEARCH, 2010, 12 (02) : 655 - 661
  • [36] Electronic structure of gold nanoparticles
    Yarzhemsky, V. G.
    Murav'ev, E. N.
    Kazaryan, M. A.
    Dyakov, Yu A.
    INORGANIC MATERIALS, 2012, 48 (11) : 1075 - 1077
  • [37] Helical Assemblies of Gold Nanoparticles
    Lilly, G. Daniel
    Agarwal, Ashish
    Srivastava, Sudhanshu
    Kotov, Nicholas A.
    SMALL, 2011, 7 (14) : 2004 - 2009
  • [38] DNA Bimodified Gold Nanoparticles
    Zhang, Tao
    Dong, Yuanchen
    Sun, Yawei
    Chen, Ping
    Yang, Yang
    Zhou, Chao
    Xu, Lijin
    Yang, Zhongqiang
    Liu, Dongsheng
    LANGMUIR, 2012, 28 (04) : 1966 - 1970
  • [39] Directed assembly of gold nanoparticles
    Westerlund, Fredrik
    Bjornholm, Thomas
    CURRENT OPINION IN COLLOID & INTERFACE SCIENCE, 2009, 14 (02) : 126 - 134
  • [40] Coalescence Behavior of Gold Nanoparticles
    Wang, Y. Q.
    Liang, W. S.
    Geng, C. Y.
    NANOSCALE RESEARCH LETTERS, 2009, 4 (07): : 684 - 688