Minimum Uncertainty JPDA Filters and Coalescence Avoidance for Multiple Object Tracking

被引:0
|
作者
Kaufman, Evan [1 ]
Lovell, T. Alan [2 ]
Lee, Taeyoung [1 ]
机构
[1] George Washington Univ, Dept Mech & Aerosp Engn, Washington, DC 20052 USA
[2] Space Vehicles Directorate, Air Force Res Lab, Kirtland AFB, NM USA
来源
JOURNAL OF THE ASTRONAUTICAL SCIENCES | 2016年 / 63卷 / 04期
基金
美国国家科学基金会;
关键词
Data association; JPDAF; Minimum uncertainty; Coalescence; ASSOCIATION;
D O I
10.1007/s40295-016-0092-2
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Two variations of the joint probabilistic data association filter (JPDAF) are derived and simulated in various cases in this paper. First, an analytic solution for an optimal gain that minimizes posterior estimate uncertainty is derived, referred to as the minimum uncertainty JPDAF (M-JPDAF). Second, the coalescence-avoiding JPDAF (C-JPDAF) is derived, which removes coalescence by minimizing a weighted sum of the posterior uncertainty and a measure of similarity between estimated probability densities. Both novel algorithms are tested in much further depth than any prior work to show how the algorithms perform in various scenarios. In particular, the M-JPDAF more accurately tracks objects than the conventional JPDAF in all simulated cases. When coalescence degrades the estimates at too great of a level, and the C-JPDAF is often superior at removing coalescence when its parameters are properly tuned.
引用
收藏
页码:308 / 334
页数:27
相关论文
共 50 条
  • [1] Minimum Uncertainty JPDA Filters and Coalescence Avoidance for Multiple Object Tracking
    Evan Kaufman
    T. Alan Lovell
    Taeyoung Lee
    The Journal of the Astronautical Sciences, 2016, 63 : 308 - 334
  • [2] MINIMUM UNCERTAINTY JPDA FILTER AND COALESCENCE AVOIDANCE PERFORMANCE EVALUATIONS
    Kaufman, Evan
    Lovell, T. Alan
    Lee, Taeyoung
    SPACEFLIGHT MECHANICS 2015, PTS I-III, 2015, 155 : 3407 - 3426
  • [3] Multiple object tracking using particle filters
    Jaward, M.
    Mihaylova, L.
    Canagarajah, N.
    Bull, D.
    2006 IEEE AEROSPACE CONFERENCE, VOLS 1-9, 2006, : 2151 - +
  • [4] Review of Kalman Filters in Multiple Object Tracking Algorithms
    Fernandez, Ian Christian B.
    Magpantay, Percival C.
    Rosales, Marc D.
    Hizon, John Richard E.
    2024 IEEE INTERNATIONAL CONFERENCE ON OMNI-LAYER INTELLIGENT SYSTEMS, COINS 2024, 2024, : 53 - 56
  • [5] Bounding Multiple Gaussians Uncertainty with Application to Object Tracking
    Zhang, Baochang
    Perina, Alessandro
    Li, Zhigang
    Murino, Vittorio
    Liu, Jianzhuang
    Ji, Rongrong
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2016, 118 (03) : 364 - 379
  • [6] Bounding Multiple Gaussians Uncertainty with Application to Object Tracking
    Baochang Zhang
    Alessandro Perina
    Zhigang Li
    Vittorio Murino
    Jianzhuang Liu
    Rongrong Ji
    International Journal of Computer Vision, 2016, 118 : 364 - 379
  • [7] MULTIPLE HYPOTHESIS TRACKING AND JOINT PROBABILISTIC DATA ASSOCIATION FILTERS FOR MULTIPLE SPACE OBJECT TRACKING
    Mishra, Utkarsh R.
    Adurthi, Nagavenkat
    Majji, Manoranjan
    Singla, Puneet
    ASTRODYNAMICS 2018, PTS I-IV, 2019, 167 : 2403 - 2412
  • [8] Real-time Implementation of YOLO plus JPDA for Small Scale UAV Multiple Object Tracking
    Xu, Shuoyuan
    Savvaris, Al
    He, Shaoming
    Shin, Hyo-sang
    Tsourdos, Antonios
    2018 INTERNATIONAL CONFERENCE ON UNMANNED AIRCRAFT SYSTEMS (ICUAS), 2018, : 1336 - 1341
  • [9] Relative Multiple Space Object Tracking Using Intensity Filters
    LeGrand, Keith A.
    DeMars, Kyle J.
    2015 18TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2015, : 1253 - 1261
  • [10] Object tracking by multiple correlation filters robust to appearance changes
    Nishimura H.
    Tasaka K.
    Kawanishi Y.
    Murase H.
    Kyokai Joho Imeji Zasshi/Journal of the Institute of Image Information and Television Engineers, 2019, 73 (05): : 1004 - 1012