A Soft Resistive Acoustic Sensor Based on Suspended Standing Nanowire Membranes with Point Crack Design

被引:108
作者
Gong, Shu [1 ,2 ]
Yap, Lim Wei [1 ,2 ]
Zhu, Yi [3 ]
Zhu, Bowen [1 ,2 ]
Wang, Yan [1 ,2 ]
Ling, Yunzhi [1 ,2 ]
Zhao, Yunmeng [1 ,2 ]
An, Tiance [1 ,2 ]
Lu, Yuerui [3 ]
Cheng, Wenlong [1 ,2 ]
机构
[1] Monash Univ, Dept Chem Engn, Clayton, Vic 3800, Australia
[2] Melbourne Ctr Nanofabricat, Clayton, Vic 3800, Australia
[3] Australian Natl Univ, Coll Engn & Comp Sci, Res Sch Engn, Canberra, ACT 0200, Australia
基金
澳大利亚研究理事会;
关键词
acoustic sensors; artificial basilar membranes; point crack design; soft microphones; standing gold nanowires; BASILAR-MEMBRANE; FILMS;
D O I
10.1002/adfm.201910717
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
An artificial basilar membrane (ABM) is an acoustic transducer that mimics the mechanical frequency selectivity of the real basilar membrane, which has the potential to revolutionize current cochlear implant technology. While such ABMs can be potentially realized using piezoelectric, triboelectric, and capacitive transduction methods, it remains notoriously difficult to achieve resistive ABM due to the poor frequency discrimination of resistive-type materials. Here, a point crack technology on noncracking vertically aligned gold nanowire (V-AuNW) films is reported, which allows for designing soft acoustic sensors with electric signals in good agreement with vibrometer output-a capability not achieved with corresponding bulk cracking system. The strategy can lead to soft microphones for music recognition comparable to the conventional microphone. Moreover, a soft resistive ABM is demonstrated by integrating eight nanowire-based sensor strips on a soft trapezoid frame. The wearable ABM exhibits high-frequency selectivity in the range of 319-1951 Hz and high sensitivity of 0.48-4.26 Pa-1. The simple yet efficient fabrication in conjunction with programmable crack design indicates the promise of the methodology for a wide range of applications in future wearable voice recognition devices, cochlea implants, and human-machine interfaces.
引用
收藏
页数:9
相关论文
共 40 条
[1]   2D Nanomaterials for Cancer Theranostic Applications [J].
Cheng, Liang ;
Wang, Xianwen ;
Gong, Fei ;
Liu, Teng ;
Liu, Zhuang .
ADVANCED MATERIALS, 2020, 32 (13)
[2]   Ultra-sensitive Pressure sensor based on guided straight mechanical cracks [J].
Choi, Yong Whan ;
Kang, Daeshik ;
Pikhitsa, Peter V. ;
Lee, Taemin ;
Kim, Sang Moon ;
Lee, Gunhee ;
Tahk, Dongha ;
Choi, Mansoo .
SCIENTIFIC REPORTS, 2017, 7
[3]   Recent advances in nanomaterial-enabled acoustic devices for audible sound generation and detection [J].
Ding, Huijun ;
Shu, Xiaolan ;
Jin, Yukun ;
Fan, Taojian ;
Zhang, Han .
NANOSCALE, 2019, 11 (13) :5839-5860
[4]   Local Crack-Programmed Gold Nanowire Electronic Skin Tattoos for In-Plane Multisensor Integration [J].
Gong, Shu ;
Yap, Lim Wei ;
Zhu, Bowen ;
Zhai, Qingfeng ;
Liu, Yiyi ;
Lyu, Quanxia ;
Wang, Kaixuan ;
Yang, Mingjie ;
Ling, Yunzhi ;
Lai, Daniel T. H. ;
Marzbanrad, Faezeh ;
Cheng, Wenlong .
ADVANCED MATERIALS, 2019, 31 (41)
[5]   One-Dimensional Nanomaterials for Soft Electronics [J].
Gong, Shu ;
Cheng, Wenlong .
ADVANCED ELECTRONIC MATERIALS, 2017, 3 (03)
[6]   A wearable and highly sensitive pressure sensor with ultrathin gold nanowires [J].
Gong, Shu ;
Schwalb, Willem ;
Wang, Yongwei ;
Chen, Yi ;
Tang, Yue ;
Si, Jye ;
Shirinzadeh, Bijan ;
Cheng, Wenlong .
NATURE COMMUNICATIONS, 2014, 5
[7]   Piezoelectric materials mimic the function of the cochlear sensory epithelium [J].
Inaoka, Takatoshi ;
Shintaku, Hirofumi ;
Nakagawa, Takayuki ;
Kawano, Satoyuki ;
Ogita, Hideaki ;
Sakamoto, Tatsunori ;
Hamanishi, Shinji ;
Wada, Hiroshi ;
Ito, Juichi .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (45) :18390-18395
[8]   MEMS flexible artificial basilar membrane fabricated from piezoelectric aluminum nitride on an SU-8 substrate [J].
Jang, Jongmoon ;
Jang, Jeong Hun ;
Choi, Hongsoo .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2017, 27 (07)
[9]   A Triboelectric-Based Artificial Basilar Membrane to Mimic Cochlear Tonotopy [J].
Jang, Jongmoon ;
Lee, JangWoo ;
Jang, Jeong Hun ;
Choi, Hongsoo .
ADVANCED HEALTHCARE MATERIALS, 2016, 5 (19) :2481-2487
[10]   A microelectromechanical system artificial basilar membrane based on a piezoelectric cantilever array and its characterization using an animal model [J].
Jang, Jongmoon ;
Lee, JangWoo ;
Woo, Seongyong ;
Sly, David J. ;
Campbell, Luke J. ;
Cho, Jin-Ho ;
O'Leary, Stephen J. ;
Park, Min-Hyun ;
Han, Sungmin ;
Choi, Ji-Wong ;
Jang, Jeong Hun ;
Choi, Hongsoo .
SCIENTIFIC REPORTS, 2015, 5