Facile synthesis of NiAl-layered double hydroxide/graphene hybrid with enhanced electrochemical properties for detection of dopamine

被引:123
作者
Li, Meixia [1 ]
Zhu, Jun E. [1 ]
Zhang, Lili [2 ]
Chen, Xu [1 ]
Zhang, Huimin [2 ]
Zhang, Fazhi [1 ]
Xu, Sailong [1 ]
Evans, David G. [1 ]
机构
[1] Beijing Univ Chem Technol, State Key Lab Chem Resource Engn, Beijing 100029, Peoples R China
[2] Beijing Inst Technol, Sch Sci, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
DOUBLE HYDROXIDES; COMPOSITE FILMS; ASCORBIC-ACID; HUMAN BRAIN; GLUCOSE; INTERCALATION; ELECTRODES; OXIDE; CATECHOLAMINES; PERFORMANCE;
D O I
10.1039/c1nr10592b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Layered double hydroxides (LDHs), also known as hydrotalcite-like anionic clays, have been investigated widely as promising electrochemical active materials. Due to the inherently weak conductivity, the electrochemical properties of LDHs were improved typically by utilization of either functional molecules intercalated between LDH interlayer galleries, or proteins confined between exfoliated LDH nanosheets. Here, we report a facile protocol to prepare NiAl-LDH/graphene (NiAl-LDH/G) nanocomposites using a conventional coprecipitation process under low-temperature conditions and subsequent reduction of the supporting graphene oxide. Electrochemical tests showed that the NiAl-LDH/G modified electrode exhibited highly enhanced electrochemical performance of dopamine electrooxidation in comparison with the pristine NiAl-LDH modified electrode. Results of high-resolution transmission electron microscopy and Raman spectra provide convincing information on the nanostructure and composition underlying the enhancement. Our results of the NiAl-LDH/G modified electrodes with the enhanced electrochemical performance may allow designing a variety of promising hybrid sensors via a simple and feasible approach.
引用
收藏
页码:4240 / 4246
页数:7
相关论文
共 63 条
[1]   A novel glucose sensor based on monodispersed Ni/Al layered double hydroxide and chitosan [J].
Ai, Hanhua ;
Huang, Xintang ;
Zhu, Zhihong ;
Liu, Jinping ;
Chi, Qingbo ;
Li, Yuanyuan ;
Li, Zikun ;
Ji, Xiaoxu .
BIOSENSORS & BIOELECTRONICS, 2008, 24 (04) :1048-1052
[2]   A nonoxidative sensor based on a self-doped polyaniline/carbon nanotube composite for sensitive and selective detection of the neurotransmitter dopamine [J].
Ali, Shah R. ;
Ma, Yufeng ;
Parajuli, Rishi R. ;
Balogun, Yetunde ;
Lai, Warren Y. -C. ;
He, Huixin .
ANALYTICAL CHEMISTRY, 2007, 79 (06) :2583-2587
[3]   Evaluation of hydrogenated physically small carbon electrodes in resisting fouling during voltammetric detection of dopamine [J].
Alwarappan, Subbiah ;
Butcher, K. Scott A. ;
Wong, Danny K. Y. .
SENSORS AND ACTUATORS B-CHEMICAL, 2007, 128 (01) :299-305
[4]   Simultaneous detection of dopamine, ascorbic acid, and uric acid at electrochemically pretreated carbon nanotube biosensors [J].
Alwarappan, Subbiah ;
Liu, Guodong ;
Li, Chen-Zhong .
NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE, 2010, 6 (01) :52-57
[5]   The Effect of Electrochemical Pretreatment on the Sensing Performance of Single Walled Carbon Nanotubes [J].
Alwarappan, Subbiah ;
Prabhulkar, Shradha ;
Durygin, Andriy ;
Li, Chen-Zhong .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2009, 9 (05) :2991-2996
[6]   Functional Composite Materials Based on Chemically Converted Graphene [J].
Bai, Hua ;
Li, Chun ;
Shi, Gaoquan .
ADVANCED MATERIALS, 2011, 23 (09) :1089-1115
[7]   In situ Controllable Growth of Prussian Blue Nanocubes on Reduced Graphene Oxide: Facile Synthesis and Their Application as Enhanced Nanoelectrocatalyst for H2O2 Reduction [J].
Cao, Linyuan ;
Liu, Yanlan ;
Zhang, Baohua ;
Lu, Lehui .
ACS APPLIED MATERIALS & INTERFACES, 2010, 2 (08) :2339-2346
[8]   HYDROTALCITE-TYPE ANIONIC CLAYS: PREPARATION, PROPERTIES AND APPLICATIONS [J].
Cavani, F. ;
Trifiro, F. ;
Vaccari, A. .
CATALYSIS TODAY, 1991, 11 (02) :173-301
[9]   A highly sensitive ultraviolet sensor based on a facile in situ solution-grown ZnO nanorod/graphene heterostructure [J].
Chang, Haixin ;
Sun, Zhenhua ;
Ho, Keith Yat-Fung ;
Tao, Xiaoming ;
Yan, Feng ;
Kwok, Wai-Ming ;
Zheng, Zijian .
NANOSCALE, 2011, 3 (01) :258-264
[10]   A Simple Route for the Preparation of Mesoporous Nanostructures Using Block Copolymers [J].
Chen, Dian ;
Park, Soojin ;
Chen, Jiun-Tai ;
Redston, Emily ;
Russell, Thomas P. .
ACS NANO, 2009, 3 (09) :2827-2833