Hankel- and Toeplitz-type operators on the unit ball

被引:2
|
作者
He, JX [1 ]
机构
[1] Nanjing Normal Univ, Dept Math, Nanjing 210097, Peoples R China
基金
中国国家自然科学基金;
关键词
orthogonal decomposition; triangle polynomials; simplex polynomials; Hankel-type operators; Toeplitz-type operators;
D O I
10.1006/jmaa.2000.7419
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let B-m be the unit ball in the m-dimensional complex plane C-m with the weighted measure d mu (alpha)(z) = (alpha + 1)(alpha + 2)...(alpha + m)/pi (m)(1-\z\(2))(alpha)dm(z) (alpha > -1). From the viewpoint of the Cauchy-Riemann operator we give an orthogonal direct sum decomposition for L-2(B-m, d mu (alpha)(z)), i.e., L-2(B-m,d mu (alpha)(z)) = circle plus (n is an element ofZ+,sigma is an element of Delta)A(n)(sigma), where the components A(0)((+,+,...,+)) and A(0)((-,-,...-)) are just the weighted Bergman and conjugate Bergman spaces, respectively. Using the simplex polynomials from T. H. Koornwinder and A. L. Schwartz (1997, Constr Approx 13, 537-567), we obtain an orthogonal basis for every subspace. As an application of the orthogonal decomposition, we define the Hankel- and Toeplitz-type operators and discuss S-p-criteria for these kinds of operators. (C) 2001 Academic Press.
引用
收藏
页码:476 / 488
页数:13
相关论文
共 50 条