A note on the Hodge theory for functionals with linear growth

被引:4
作者
Baldo, S [1 ]
Orlandi, G [1 ]
机构
[1] Univ Trent, Dipartimento Matemat, I-38050 Povo, TN, Italy
关键词
D O I
10.1007/s002290050114
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Hedge decomposition of L-1- (and measure-) differential forms over a compact manifold without boundary, giving positive results and counterexamples. The theory is then applied to the relaxation and minimization, in cohomology classes, of convex functionals with linear growth. This corresponds to a non-linear version of the Hedge theory, in the spirit of L. M. Sibner and R. J. Sibner [SS].
引用
收藏
页码:453 / 467
页数:15
相关论文
共 16 条
[1]  
[Anonymous], 1979, COMMENT MATH U CAROL
[2]  
[Anonymous], ACTA MATH
[3]  
Buttazzo G., 1989, Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations
[5]  
de Rham G., 1960, Varietes Differentiables
[6]   REAL FLAT CHAINS, COCHAINS AND VARIATIONAL PROBLEMS [J].
FEDERER, H .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1974, 24 (04) :351-407
[7]  
Federer H., 1969, GEOMETRIC MEASURE TH
[8]  
HAMBURGER C, 1992, J REINE ANGEW MATH, V431, P7
[9]  
IWANIEC T, 1996, 48 SYR U U NAPL
[10]  
LUCKHAUS S, 1989, ARCH RATION MECH AN, V107, P71, DOI 10.1007/BF00251427