Measurement of runaway electron energy distribution function during high-Z gas injection into runaway electron plateaus in DIII-D

被引:57
作者
Hollmann, E. M. [1 ]
Parks, P. B. [2 ]
Commaux, N. [3 ]
Eidietis, N. W. [2 ]
Moyer, R. A. [1 ]
Shiraki, D. [3 ]
Austin, M. E. [4 ]
Lasnier, C. J. [5 ]
Paz-Soldan, C. [2 ]
Rudakov, D. L. [1 ]
机构
[1] Univ Calif San Diego, La Jolla, CA 92093 USA
[2] Gen Atom Co, San Diego, CA 92186 USA
[3] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
[4] Univ Texas Austin, Inst Fus Studies, Austin, TX 78712 USA
[5] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
关键词
AVALANCHE;
D O I
10.1063/1.4921149
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The evolution of the runaway electron (RE) energy distribution function f(epsilon) during massive gas injection into centered post-disruption runaway electron plateaus has been reconstructed. Overall, f(epsilon) is found to be much more skewed toward low energy than predicted by avalanche theory. The reconstructions also indicate that the RE pitch angle theta is not uniform, but tends to be large at low energies and small theta similar to 0.1-0.2 at high energies. Overall power loss from the RE plateau appears to be dominated by collisions with background free and bound electrons, leading to line radiation. However, the drag on the plasma current appears to be dominated by collisions with impurity ions in most cases. Synchrotron emission appears not to be significant for overall RE energy dissipation but may be important for limiting the peak RE energy. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:9
相关论文
共 26 条
  • [11] Effect of applied toroidal electric field on the growth/decay of plateau-phase runaway electron currents in DIII-D
    Hollmann, E. M.
    Parks, P. B.
    Humphreys, D. A.
    Brooks, N. H.
    Commaux, N.
    Eidietis, N.
    Evans, T. E.
    Isler, R.
    James, A. N.
    Jernigan, T. C.
    Munoz, J.
    Strait, E. J.
    Tsui, C.
    Wesley, J.
    Yu, J. H.
    [J]. NUCLEAR FUSION, 2011, 51 (10)
  • [12] Active control for stabilization of neoclassical tearing modes
    Humphreys, D. A.
    Ferron, J. R.
    La Haye, R. J.
    Luce, T. C.
    Petty, C. C.
    Prater, R.
    Welander, A. S.
    [J]. PHYSICS OF PLASMAS, 2006, 13 (05)
  • [13] Suppression of runaway electrons by resonant magnetic perturbations in TEXTOR disruptions
    Lehnen, M.
    Bozhenkov, S. A.
    Abdullaev, S. S.
    Jakubowski, M. W.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 100 (25)
  • [14] A design retrospective of the DIII-D tokamak
    Luxon, JL
    [J]. NUCLEAR FUSION, 2002, 42 (05) : 614 - 633
  • [15] Inter-machine comparison of the termination phase and energy conversion in tokamak disruptions with runaway current plateau formation and implications for ITER
    Martin-Solis, J. R.
    Loarte, A.
    Hollmann, E. M.
    Esposito, B.
    Riccardo, V.
    [J]. NUCLEAR FUSION, 2014, 54 (08)
  • [16] Runaway electron damage to the Tore Supra phase III outboard pump limiter
    Nygren, R
    Lutz, T
    Walsh, D
    Martin, G
    Chatelier, M
    Loarer, T
    Guilhem, D
    [J]. JOURNAL OF NUCLEAR MATERIALS, 1997, 241 : 522 - 527
  • [17] The effect of resonant magnetic perturbations on runaway electron transport in ITER
    Papp, G.
    Drevlak, M.
    Fulop, T.
    Pokol, G. I.
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2012, 54 (12)
  • [18] Avalanche runaway growth rate from a momentum-space orbit analysis
    Parks, PB
    Rosenbluth, MN
    Putvinski, SV
    [J]. PHYSICS OF PLASMAS, 1999, 6 (06) : 2523 - 2528
  • [19] Chapter 7 - Disruption studies in jet
    Riccardo, V.
    [J]. FUSION SCIENCE AND TECHNOLOGY, 2008, 53 (04) : 1064 - 1079
  • [20] Theory for avalanche of runaway electrons in tokamaks
    Rosenbluth, MN
    Putvinski, SV
    [J]. NUCLEAR FUSION, 1997, 37 (10) : 1355 - 1362