EXISTENCE AND UNIQUENESS OF MONOTONE POSITIVE SOLUTIONS FOR FRACTIONAL HIGHER-ORDER BVPS

被引:0
作者
Zhou, Mi [1 ]
机构
[1] Sichuan Univ, Dept Math, Chengdu, Peoples R China
关键词
monotone positive solution; Green function; cones; fixed point theorem; BOUNDARY-VALUE-PROBLEMS; FIXED-POINT THEOREMS; DIFFERENTIAL-EQUATIONS; OPERATORS;
D O I
10.1216/rmj.2020.50.733
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We discuss the existence and uniqueness of monotone positive solutions for a class of higher-order nonlinear fractional differential equations infinite-point boundary value problems (for short, BVPs) on cones. The existence and uniqueness of solutions are obtained via applying the properties of the Green function and a fixed point theorem. Our analysis is based on the operator equation T omega + S omega = omega on an ordered Banach space. Finally, a example is given to illustrate our results.
引用
收藏
页码:733 / 745
页数:13
相关论文
共 22 条
[1]   On four-point nonlocal boundary value problems of nonlinear integro-differential equations of fractional order [J].
Ahmad, Bashir ;
Sivasundaram, S. .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (02) :480-487
[2]   Application of the mixed monotone operator to a nonlinear third-order boundary value problem [J].
Cabrera, I. J. ;
Rocha, J. ;
Sadarangani, K. B. .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2018, 112 (04) :1317-1325
[3]   Nontrivial solutions for a nonlinear multi-point boundary value problem of fractional order [J].
El-Shahed, Moustafa ;
Nieto, Juan J. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (11) :3438-3443
[4]   COUPLED FIXED-POINTS OF NONLINEAR OPERATORS WITH APPLICATIONS [J].
GUO, D ;
LAKSHMIKANTHAM, V .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1987, 11 (05) :623-632
[5]  
Hilfer R., 2000, APPL FRACTIONAL CALC
[6]  
Kilbas AA., 2006, THEORY APPL FRACTION
[7]   Cauchy problems for fractional differential equations with Riemann-Liouville fractional derivatives [J].
Li Kexue ;
Peng Jigen ;
Jia Junxiong .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 263 (02) :476-510
[8]   Positive solutions for boundary value problems of nonlinear fractional differential equation [J].
Liang, Sihua ;
Zhang, Jihui .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (11) :5545-5550
[9]   Fractional Differential Equations [J].
Liu, Fawang ;
Meerschaert, Mark M. ;
Momani, Shaher ;
Leonenko, Nikolai N. ;
Chen, Wen ;
Agrawal, Om P. .
INTERNATIONAL JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 2010
[10]   The unique solution of a class of sum mixed monotone operator equations and its application to fractional boundary value problems [J].
Liu, Lishan ;
Zhang, Xinqiu ;
Jiang, Juan ;
Wu, Yonghong .
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (05) :2943-2958