Pose Estimation from RGB Images of Highly Symmetric Objects using a Novel Multi-Pose Loss and Differential Rendering

被引:2
作者
Bengtson, Stefan Hein [1 ]
Astram, Hampus [2 ]
Moeslund, Thomas B. [1 ]
Topp, Elin A. [2 ]
Krueger, Volker [2 ]
机构
[1] Aalborg Univ, Visual Anal & Percept VAP Lab, Aalborg, Denmark
[2] Lund Univ, Dept Comp Sci, Robot & Semant Syst, Lund, Sweden
来源
2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS) | 2021年
关键词
D O I
10.1109/IROS51168.2021.9636839
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a novel multi-pose loss function to train a neural network for 6D pose estimation, using synthetic data and evaluating it on real images. Our loss is inspired by the VSD (Visible Surface Discrepancy) metric and relies on a differentiable renderer and CAD models. This novel multi-pose approach produces multiple weighted pose estimates to avoid getting stuck in local minima. Our method resolves pose ambiguities without using predefined symmetries. It is trained only on synthetic data. We test on real-world RGB images from the T-LESS dataset, containing highly symmetric objects common in industrial settings. We show that our solution can be used to replace the codebook in a state-of-the-art approach. So far, the codebook approach has had the shortest inference time in the field. Our approach reduces inference time further while a) avoiding discretization, b) requiring a much smaller memory footprint and c) improving pose recall.(3)
引用
收藏
页码:4618 / 4624
页数:7
相关论文
共 22 条
[1]  
[Anonymous], 2020, CVPR, DOI DOI 10.1109/CVPR42600.2020.00051
[2]  
[Anonymous], 2019, CVPR, DOI DOI 10.1109/CVPR.2019.00469
[3]  
[Anonymous], ECCV
[4]  
Deng XK, 2019, ROBOTICS: SCIENCE AND SYSTEMS XV
[5]  
Grossmann B, 2017, IEEE INTL CONF IND I, P331, DOI 10.1109/INDIN.2017.8104794
[6]  
He Y., 2020, CVPR
[7]   Going Further with Point Pair Features [J].
Hinterstoisser, Stefan ;
Lepetit, Vincent ;
Rajkumar, Naresh ;
Konolige, Kurt .
COMPUTER VISION - ECCV 2016, PT III, 2016, 9907 :834-848
[8]  
Hoda T., 2020, ECCV WORKSH
[9]   BOP: Benchmark for 6D Object Pose Estimation [J].
Hodan, Tomas ;
Michel, Frank ;
Brachmann, Eric ;
Kehl, Wadim ;
Buch, Anders Glent ;
Kraft, Dirk ;
Drost, Bertram ;
Vidal, Joel ;
Ihrke, Stephan ;
Zabulis, Xenophon ;
Sahin, Caner ;
Manhardt, Fabian ;
Tombari, Federico ;
Kim, Tae-Kyun ;
Matas, Jiri ;
Rother, Carsten .
COMPUTER VISION - ECCV 2018, PT X, 2018, 11214 :19-35
[10]   On Evaluation of 6D Object Pose Estimation [J].
Hodan, Tomas ;
Matas, Jiri ;
Obdrzalek, Stephan .
COMPUTER VISION - ECCV 2016 WORKSHOPS, PT III, 2016, 9915 :606-619