Multi-objective energy-efficient dense deployment in Wireless Sensor Networks using a hybrid problem-specific MOEA/D

被引:61
作者
Konstantinidis, Andreas [1 ,2 ]
Yang, Kun [3 ]
机构
[1] Univ Cyprus, Dept Comp Sci, CY-1678 Nicosia, Cyprus
[2] Frederick Univ, Dept Comp Sci & Engn, CY-1036 Nicosia, Cyprus
[3] Univ Essex, Sch Comp Sci & Elect Engn, Colchester CO4 3SQ, Essex, England
关键词
Wireless sensor networks; Energy efficiency; Dense deployment; Multi-objective optimization; Evolutionary algorithms; Decomposition; Heuristics; Problem-specific knowledge; EVOLUTIONARY ALGORITHM; TOPOLOGY CONTROL; GENETIC ALGORITHM; POWER ASSIGNMENT; LOCAL SEARCH; AD HOC; OPTIMIZATION; LOCATION; PROTOCOL;
D O I
10.1016/j.asoc.2011.02.031
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An energy-efficient Wireless Sensor Network (WSN) design often requires the decision of optimal locations (deployment) and power assignments of the sensors to be densely deployed in an area of interest. In the literature, no attempts have been made on optimizing both decision variables for maximizing the network coverage and lifetime objectives, while maintaining the connectivity constraint, at the same time. In this paper, the Dense Deployment and Power Assignment Problem (d-DPAP) in Wireless Sensor Networks (WSNs) is defined, and a Multi-objective Evolutionary Algorithm based on Decomposition (MOEA/D) hybridized with a problem-specific Generalized Subproblem-dependent Heuristic (GSH), is proposed. In our method, the d-DPAP is decomposed into a number of scalar subproblems. The subproblems are optimized in parallel, by using neighbourhood information and problem-specific knowledge. The proposed GSH probabilistically alternates between six d-DPAP specific strategies, which are designed based on various WSN concepts and according to the subproblems objective preferences. Simulation results have shown that the proposed hybrid problem-specific MOEA/D performs better than the general-purpose MOEA/D and NSGA-II in several WSN instances, providing a diverse set of high-quality near-optimal network designs to facilitate the decision making process. The behavior of the MOEA/D-GSH in the objective space is also discussed. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:4117 / 4134
页数:18
相关论文
共 50 条
[31]   Enhancing energy-efficient building design: a multi-agent-assisted MOEA/D approach for multi-objective optimization [J].
Guo, Wei ;
Dong, Yaqiong .
Energy Informatics, 2024, 7 (01)
[32]   Energy-efficient deployment strategies in structural health monitoring using wireless sensor networks [J].
Fu, Tat S. ;
Ghosh, Amitabha ;
Johnson, Erik A. ;
Krishnamachari, Bhaskar .
STRUCTURAL CONTROL & HEALTH MONITORING, 2013, 20 (06) :971-986
[33]   Energy-Efficient and Reliable Deployment Models for Hybrid Underwater Acoustic Sensor Networks with a Mobile Gateway [J].
Fedorova, Tatiana A. ;
Ryzhov, Vladimir A. ;
Safronov, Kirill S. ;
Semenov, Nikolay N. ;
Sulaiman, Shaharin A. .
JOURNAL OF MARINE SCIENCE AND APPLICATION, 2024, 23 (04) :960-983
[34]   UEEDA: Uniform and energy-efficient deployment algorithm for wireless sensor networks [J].
Weng, Chien-Erh ;
Lain, Jenn-Kaie ;
Zhang, Jia-Ming ;
Wen, Jyh-Horng .
INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, 2008, 21 (05) :453-467
[35]   Energy-efficient distributed permutation flow shop scheduling problem using a multi-objective whale swarm algorithm [J].
Wang, Guangchen ;
Gao, Liang ;
Li, Xinyu ;
Li, Peigen ;
Tasgetiren, M. Fatih .
SWARM AND EVOLUTIONARY COMPUTATION, 2020, 57
[36]   Constrained Relay Node Deployment using an improved multi-objective Artificial Bee Colony in Wireless Sensor Networks [J].
Yu, Wenjie ;
Li, Xunbo ;
Li, Xiang ;
Zeng, Zhi .
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2017, 11 (06) :2889-2909
[37]   Energy-efficient routing protocol for underwater wireless sensor networks using a hybrid metaheuristic algorithm [J].
Saemi, Behzad ;
Goodarzian, Fariba .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133
[38]   Multi-objective optimization for energy-efficient hybrid flow shop scheduling problem in panel furniture intelligent manufacturing with transportation constraints [J].
Yue, Xinyi ;
Xiong, Xianqing ;
Zhang, Mei ;
Xu, Xiutong ;
Yang, Lujie .
EXPERT SYSTEMS WITH APPLICATIONS, 2025, 274
[39]   On the Use of Problem-Specific Candidate Generators for the Hybrid Optimization of Multi-Objective Production Engineering Problems [J].
Weinert, K. ;
Zabel, A. ;
Kersting, P. ;
Michelitsch, T. ;
Wagner, T. .
EVOLUTIONARY COMPUTATION, 2009, 17 (04) :527-544
[40]   Energy-Efficient Node Deployment in Wireless Ad-hoc Sensor Networks [J].
Guo, Jun ;
Karimi-Bidhendi, Saeed ;
Jafarkhani, Hamid .
ICC 2020 - 2020 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2020,