Wireless sensor networks;
Energy efficiency;
Dense deployment;
Multi-objective optimization;
Evolutionary algorithms;
Decomposition;
Heuristics;
Problem-specific knowledge;
EVOLUTIONARY ALGORITHM;
TOPOLOGY CONTROL;
GENETIC ALGORITHM;
POWER ASSIGNMENT;
LOCAL SEARCH;
AD HOC;
OPTIMIZATION;
LOCATION;
PROTOCOL;
D O I:
10.1016/j.asoc.2011.02.031
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
An energy-efficient Wireless Sensor Network (WSN) design often requires the decision of optimal locations (deployment) and power assignments of the sensors to be densely deployed in an area of interest. In the literature, no attempts have been made on optimizing both decision variables for maximizing the network coverage and lifetime objectives, while maintaining the connectivity constraint, at the same time. In this paper, the Dense Deployment and Power Assignment Problem (d-DPAP) in Wireless Sensor Networks (WSNs) is defined, and a Multi-objective Evolutionary Algorithm based on Decomposition (MOEA/D) hybridized with a problem-specific Generalized Subproblem-dependent Heuristic (GSH), is proposed. In our method, the d-DPAP is decomposed into a number of scalar subproblems. The subproblems are optimized in parallel, by using neighbourhood information and problem-specific knowledge. The proposed GSH probabilistically alternates between six d-DPAP specific strategies, which are designed based on various WSN concepts and according to the subproblems objective preferences. Simulation results have shown that the proposed hybrid problem-specific MOEA/D performs better than the general-purpose MOEA/D and NSGA-II in several WSN instances, providing a diverse set of high-quality near-optimal network designs to facilitate the decision making process. The behavior of the MOEA/D-GSH in the objective space is also discussed. (C) 2011 Elsevier B.V. All rights reserved.
机构:
Univ Malaya UM, Fac Comp Sci & Informat Technol, Dept Comp Syst & Technol, Kuala Lumpur 50603, Malaysia
Univ Malaysia Sabah UMS, Fac Comp & Informat, Kota Kinabalu, Sabah, MalaysiaUniv Malaya UM, Fac Comp Sci & Informat Technol, Dept Comp Syst & Technol, Kuala Lumpur 50603, Malaysia
Fattah, Salmah
Ahmedy, Ismail
论文数: 0引用数: 0
h-index: 0
机构:
Univ Malaya UM, Fac Comp Sci & Informat Technol, Dept Comp Syst & Technol, Kuala Lumpur 50603, MalaysiaUniv Malaya UM, Fac Comp Sci & Informat Technol, Dept Comp Syst & Technol, Kuala Lumpur 50603, Malaysia