Elemental Doping Induced Sulfur Vacancies Enable Efficient Electrochemical Reduction of CO2 over CdS Nanorods

被引:21
作者
Dong, Changxue [1 ,2 ]
Cui, Lei [3 ,4 ,5 ]
Kong, Yuan [3 ,4 ,5 ]
Chen, Chang [1 ]
Liu, Huanhuan [2 ]
Zhang, Yaping [2 ]
Zhu, Wenkun [2 ]
He, Rong [2 ]
机构
[1] Leshan Normal Univ, Sch Phys & Elect Engn, Leshan 614000, Sichuan, Peoples R China
[2] Southwest Univ Sci & Technol, Natl Collaborat Innovat Ctr Nucl Waste & Environm, Sch Natl Def Sci & Technol, State Key Lab Environm Friendly Energy Mat,Nucl W, Mianyang 621010, Sichuan, Peoples R China
[3] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[4] Univ Sci & Technol China, Dept Chem Phys, Hefei 230026, Anhui, Peoples R China
[5] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China
关键词
CARBON-DIOXIDE; ELECTROCATALYTIC REDUCTION; CATALYSTS; NANOPARTICLES;
D O I
10.1021/acs.jpcc.1c09344
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The electrochemical reduction of CO2 suffered from the large energy loss induced by the Ohmic loss of electrocatalysts and the large barrier for CO2 activation. Herein, we incorporated the monovalent Ag+ into CdS nanorods, so as to integrate the elemental doping and sulfur vacancies (S-vacancies) for boosted electrochemical reduction of CO2. Specifically, the doping of Ag+ accompanied by the formation of S-vacancies due to the conservation of charge. At-1.1 V versus RHE, the Ag-doped CdS (Ag-CdS1-x) nanorods exhibited a considerable current density of 53.7 mA cm(-2) with a maximum Faradaic efficiency (FE) for CO production of 87.1%, which significantly overperformed the performance of pristine CdS nanorods and CdS1-x nanorods with a similar concentration of S-vacancies. A mechanistic study revealed that the Ag doping increased the carrier density of CdS nanorods by 3.1 times, together with the S-vacancies strengthened the binding of CO2 over electrocatalysts. The combination of promoted conductivity and facilitated CO2 activation accounted for the efficient electrochemical reduction of CO2 over Ag-CdS1-x nanorods.
引用
收藏
页码:102 / 109
页数:8
相关论文
共 46 条
[1]   CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions [J].
Burdyny, Thomas ;
Smith, Wilson A. .
ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (05) :1442-1453
[2]   Atomically Dispersed Transition Metals on Carbon Nanotubes with Ultrahigh Loading for Selective Electrochemical Carbon Dioxide Reduction [J].
Cheng, Yi ;
Zhao, Shiyong ;
Johannessen, Bernt ;
Veder, Jean-Pierre ;
Saunders, Martin ;
Rowles, Matthew R. ;
Cheng, Min ;
Liu, Chang ;
Chisholm, Matthew F. ;
De Marco, Roland ;
Cheng, Hui-Ming ;
Yang, Shi-Ze ;
Jiang, San Ping .
ADVANCED MATERIALS, 2018, 30 (13)
[3]   Energy efficient electrochemical reduction of CO2 to CO using a three-dimensional porphyrin/graphene hydrogel [J].
Choi, Jaecheol ;
Kim, Jeonghun ;
Wagner, Pawel ;
Gambhir, Sanjeev ;
Jalili, Rouhollah ;
Byun, Seoungwoo ;
Sayyar, Sepidar ;
Lee, Yong Min ;
MacFarlane, Douglas R. ;
Wallace, Gordon G. ;
Officer, David L. .
ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (02) :747-755
[4]   First-Principles Insight into Electrocatalytic Reduction of CO2 to CH4 on a Copper Nanoparticle [J].
Dong, Huilong ;
Li, Youyong ;
Jiang, De-en .
JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (21) :11392-11398
[5]   Amorphizing of Cu Nanoparticles toward Highly Efficient and Robust Electrocatalyst for CO2 Reduction to Liquid Fuels with High Faradaic Efficiencies [J].
Duan, Yan-Xin ;
Meng, Fan-Lu ;
Liu, Kai-Hua ;
Yi, Sha-Sha ;
Li, Si-Jia ;
Yan, Jun-Min ;
Jiang, Qing .
ADVANCED MATERIALS, 2018, 30 (14)
[6]   Enhancing CO2 Electroreduction with the Metal-Oxide Interface [J].
Gao, Dunfeng ;
Zhang, Yi ;
Zhou, Zhiwen ;
Cai, Fan ;
Zhao, Xinfei ;
Huang, Wugen ;
Li, Yangsheng ;
Zhu, Junfa ;
Liu, Ping ;
Yang, Fan ;
Wang, Guoxiong ;
Bao, Xinhe .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (16) :5652-5655
[7]   Oxygen Vacancies in ZnO Nanosheets Enhance CO2 Electrochemical Reduction to CO [J].
Geng, Zhigang ;
Kong, Xiangdong ;
Chen, Weiwei ;
Su, Hongyang ;
Liu, Yan ;
Cai, Fan ;
Wang, Guoxiong ;
Zeng, Jie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (21) :6054-6059
[8]   Densely Packed, Ultra Small SnO Nanoparticles for Enhanced Activity and Selectivity in Electrochemical CO2 Reduction [J].
Gu, Jun ;
Heroguel, Florent ;
Luterbacher, Jeremy ;
Hu, Xile .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (11) :2943-2947
[9]   Achieving the Widest Range of Syngas Proportions at High Current Density over Cadmium Sulfoselenide Nanorods in CO2 Electroreduction [J].
He, Rong ;
Zhang, An ;
Ding, Yilun ;
Kong, Taoyi ;
Xiao, Qing ;
Li, Hongliang ;
Liu, Yan ;
Zeng, Jie .
ADVANCED MATERIALS, 2018, 30 (07)
[10]   Nanoporous Copper Silver Alloys by Additive-Controlled Electrodeposition for the Selective Electroreduction of CO2 to Ethylene and Ethanol [J].
Hoang, Thao T. H. ;
Verma, Sumit ;
Ma, Sichao ;
Fister, Tim T. ;
Timoshenko, Janis ;
Frenkel, Anatoly I. ;
Kenis, Paul J. A. ;
Gewirth, Andrew A. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (17) :5791-5797