Positive solutions for nonlinear Robin problems with indefinite potential and competing nonlinearities

被引:19
作者
Leonardi, S. [1 ]
Papageorgiou, Nikolaos S. [2 ]
机构
[1] Univ Catania, Dipartimento Matemat & Informat, Viale A Doria 6, I-95125 Catania, Italy
[2] Natl Tech Univ Athens, Dept Math, Zografou Campus, Athens 15780, Greece
关键词
Competing nonlinearities; Truncation; Nonlinear regularity; Nonlinear maximin principle; Strong comparison principle; Bifurcation-type result; Minimal positive solutions; LOCAL MINIMIZERS; MULTIPLICITY; EQUATIONS; CONCAVE;
D O I
10.1007/s11117-019-00681-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a nonlinear Robin problem associated to the p-Laplacian plus an indefinite potential. In the reaction we have the competing effects of two nonlinear terms. One is parametric and strictly ( p - 1)-sublinear. The other is ( p - 1)-linear. We prove a bifurcation-type theorem describing the dependence of the set of positive solutions on the parameter. > 0. We also showthat for every admissible parameter the problem has a smallest positive solution u. and we study monotonicity and continuity properties of the map.. (u) over tilde (lambda).
引用
收藏
页码:339 / 367
页数:29
相关论文
共 21 条
[1]  
Aizicovici S., 2018, MEMOIRS AM MATH SOC, V196, P915
[2]   COMBINED EFFECTS OF CONCAVE AND CONVEX NONLINEARITIES IN SOME ELLIPTIC PROBLEMS [J].
AMBROSETTI, A ;
BREZIS, H ;
CERAMI, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 122 (02) :519-543
[3]   Sobolev versus Holder local minimizers and global multiplicity for some quasilinear elliptic equations [J].
Azorero, JPG ;
Alonso, IP ;
Manfredi, JJ .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2000, 2 (03) :385-404
[4]  
BREZIS H, 1993, CR ACAD SCI I-MATH, V317, P465
[5]  
Candito P, 2015, ELECTRON J QUAL THEO, P1
[6]  
Gasinski L., 2016, Exercises in Analysis. Part 2. Nonlinear Analysis
[7]  
Gasinski L., 2006, Nonlinear analysis
[8]   W1,p versus C1 local minimizers and multiplicity results for quasilinear elliptic equations [J].
Guo, ZM ;
Zhang, ZT .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 286 (01) :32-50
[9]  
Hu S., 1997, Handbook of Multivalued Analysis (Theory), DOI 10.1007/978-1-4615-6359-4
[10]   MULTIPLICITY OF SOLUTIONS FOR PARAMETRIC p-LAPLACIAN EQUATIONS WITH NONLINEARITY CONCAVE NEAR THE ORIGIN [J].
Hu, Shouchuan ;
Papageorgiou, Nikolaos S. .
TOHOKU MATHEMATICAL JOURNAL, 2010, 62 (01) :137-162